論文の概要: Language Model Adaptation to Specialized Domains through Selective
Masking based on Genre and Topical Characteristics
- arxiv url: http://arxiv.org/abs/2402.12036v1
- Date: Mon, 19 Feb 2024 10:43:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 17:19:03.558842
- Title: Language Model Adaptation to Specialized Domains through Selective
Masking based on Genre and Topical Characteristics
- Title(参考訳): ジャンルと話題特性に基づく選択的マスキングによる専門分野への言語モデル適応
- Authors: Anas Belfathi, Ygor Gallina, Nicolas Hernandez, Richard Dufour, Laura
Monceaux
- Abstract要約: 本稿では、ジャンルや話題情報を活用した革新的なマスキング手法を導入し、言語モデルを専門ドメインにカスタマイズする。
本手法では,その重要度に基づいて単語を優先順位付けし,マスキング手順を導出するランキング処理を取り入れた。
法域内での継続事前学習を用いて行った実験は、英語のLegalGLUEベンチマークにおいて、我々のアプローチの有効性を裏付けている。
- 参考スコア(独自算出の注目度): 4.9639158834745745
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in pre-trained language modeling have facilitated significant
progress across various natural language processing (NLP) tasks. Word masking
during model training constitutes a pivotal component of language modeling in
architectures like BERT. However, the prevalent method of word masking relies
on random selection, potentially disregarding domain-specific linguistic
attributes. In this article, we introduce an innovative masking approach
leveraging genre and topicality information to tailor language models to
specialized domains. Our method incorporates a ranking process that prioritizes
words based on their significance, subsequently guiding the masking procedure.
Experiments conducted using continual pre-training within the legal domain have
underscored the efficacy of our approach on the LegalGLUE benchmark in the
English language. Pre-trained language models and code are freely available for
use.
- Abstract(参考訳): 事前学習された言語モデリングの最近の進歩は、様々な自然言語処理(NLP)タスクにおいて大きな進歩をもたらした。
モデルトレーニング中のワードマスキングは、BERTのようなアーキテクチャにおける言語モデリングの重要な要素である。
しかし、単語マスキングの一般的な方法はランダムな選択に依存し、ドメイン固有の言語属性を無視する可能性がある。
本稿では、ジャンルや話題情報を活用した革新的なマスキング手法を導入し、言語モデルを専門ドメインにカスタマイズする。
本手法では,その重要度に基づいて単語を優先順位付けし,マスキング手順の指導を行う。
法域内での継続事前学習を用いて行った実験は、英語のLegalGLUEベンチマークにおけるアプローチの有効性を裏付けている。
事前訓練された言語モデルとコードは無料で利用できる。
関連論文リスト
- DSG-KD: Knowledge Distillation from Domain-Specific to General Language Models [8.328673243329794]
本研究は,韓国の小児救急部門(PED)から得られた電子カルテ(EMR)データに基づく緊急時・緊急時・緊急時分類タスクについて検討した。
既存のドメイン固有の事前学習言語モデルは、N言語自由テキストデータ特性を扱う場合の一般的な言語モデルと比較して性能が劣る。
本稿では,知識蒸留を利用したドメイン知識伝達手法を提案する。
論文 参考訳(メタデータ) (2024-09-23T10:59:02Z) - Investigating Masking-based Data Generation in Language Models [0.0]
BERTと類似したアーキテクチャを持つモデルの特徴は、マスキング言語モデリングの目的である。
データ拡張は、機械学習で広く使われているデータ駆動技術である。
最近の研究は、NLP下流タスクのための人工的な拡張データを生成するためにマスク付き言語モデルを利用している。
論文 参考訳(メタデータ) (2023-06-16T16:48:27Z) - Self-Evolution Learning for Discriminative Language Model Pretraining [103.57103957631067]
自己進化学習(Self-Evolution Learning、SE)は、単純で効果的なトークンマスキングと学習方法である。
SEは情報的だが未探索のトークンを学習することに集中し、新しいToken固有のラベル平滑化アプローチを導入してトレーニングを適応的に調整する。
論文 参考訳(メタデータ) (2023-05-24T16:00:54Z) - Unsupervised Improvement of Factual Knowledge in Language Models [4.5788796239850225]
マスケッド言語モデリングは、大規模言語モデルの事前訓練において重要な役割を果たす。
本稿では,様々な知識集約型タスクにおいて,言語モデルの性能を向上させる方法として,事前学習に影響を与えるアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-04T07:37:06Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - Neural Mask Generator: Learning to Generate Adaptive Word Maskings for
Language Model Adaptation [63.195935452646815]
本稿では,自己教師付き事前学習のためのテキストのドメイン適応マスキングとタスク適応マスキングを自動生成する手法を提案する。
本稿では,マスキング政策を学習する新しい強化学習フレームワークを提案する。
我々はいくつかの質問応答とテキスト分類データセットに基づいてニューラルマスク生成器(NMG)を検証する。
論文 参考訳(メタデータ) (2020-10-06T13:27:01Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - UniLMv2: Pseudo-Masked Language Models for Unified Language Model
Pre-Training [152.63467944568094]
本稿では,自動エンコーディングと部分的自己回帰型言語モデリングタスクの両方に対して,統一言語モデルを事前学習することを提案する。
実験の結果,PMLMを用いて事前学習した統一言語モデルは,多種多様な自然言語理解・生成タスクにおいて,新たな最先端の成果が得られることがわかった。
論文 参考訳(メタデータ) (2020-02-28T15:28:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。