論文の概要: Interpretable Brain-Inspired Representations Improve RL Performance on
Visual Navigation Tasks
- arxiv url: http://arxiv.org/abs/2402.12067v1
- Date: Mon, 19 Feb 2024 11:35:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 16:53:00.322265
- Title: Interpretable Brain-Inspired Representations Improve RL Performance on
Visual Navigation Tasks
- Title(参考訳): 視覚ナビゲーションタスクにおける解釈可能な脳誘発表現によるRL性能の向上
- Authors: Moritz Lange, Raphael C. Engelhardt, Wolfgang Konen, Laurenz Wiskott
- Abstract要約: 本研究では,視覚データの解釈可能な表現を生成することにより,遅い特徴解析(SFA)の手法が両方の制約を克服することを示す。
我々はSFAを現代の強化学習の文脈で採用し、表現を分析し比較し、階層的なSFAがナビゲーションタスクにおいて他の特徴抽出器よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Visual navigation requires a whole range of capabilities. A crucial one of
these is the ability of an agent to determine its own location and heading in
an environment. Prior works commonly assume this information as given, or use
methods which lack a suitable inductive bias and accumulate error over time. In
this work, we show how the method of slow feature analysis (SFA), inspired by
neuroscience research, overcomes both limitations by generating interpretable
representations of visual data that encode location and heading of an agent. We
employ SFA in a modern reinforcement learning context, analyse and compare
representations and illustrate where hierarchical SFA can outperform other
feature extractors on navigation tasks.
- Abstract(参考訳): ビジュアルナビゲーションには、あらゆる機能が必要です。
これらのうち重要なものは、エージェントが自身の位置を判断し、環境に向かう能力である。
先行研究は、この情報を与えられたものとみなすのが一般的であり、あるいは適切な帰納バイアスがなく、時間とともにエラーを蓄積する手法を使用する。
本研究では,神経科学研究に触発された遅い特徴解析(sfa)の手法が,エージェントの位置や方向をエンコードする視覚データの解釈可能な表現を生成することにより,両者の限界を克服することを示す。
我々はsfaを現代的強化学習コンテキストで採用し,表現の分析と比較を行い,階層的sfaがナビゲーションタスクにおいて他の特徴抽出器よりも優れていることを示す。
関連論文リスト
- Vision-Language Models Provide Promptable Representations for Reinforcement Learning [67.40524195671479]
視覚言語モデル(VLM)に符号化された多量の一般知識と索引可能な世界知識をインターネット規模で事前学習して具体的強化学習(RL)を行う新しい手法を提案する。
提案手法では,共通意味的推論の表現にチェーン・オブ・シントを用いることで,新規シーンのポリシー性能を1.5倍向上できることを示す。
論文 参考訳(メタデータ) (2024-02-05T00:48:56Z) - Selective Visual Representations Improve Convergence and Generalization
for Embodied AI [44.33711781750707]
身体化されたAIモデルは、CLIPのような棚の視覚バックボーンを使って視覚的な観察をエンコードすることが多い。
これは学習プロセス内のノイズを導入し、タスク関連視覚的手がかりからエージェントの焦点を逸脱させる。
人間が経験、知識、課題に基づいて知覚をフィルタリングするプロセスにおいて、人間の選択的な注意を喚起して、我々は、具体化されたAIのための視覚刺激をフィルタリングするためのパラメータ効率の良いアプローチを導入する。
論文 参考訳(メタデータ) (2023-11-07T18:34:02Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
エージェントの自我中心のビューとセマンティックマップを対比してナビゲーション固有の視覚表現学習法を提案する。
Ego$2$-Map学習は、オブジェクト、構造、遷移などのコンパクトでリッチな情報を、ナビゲーションのためのエージェントのエゴセントリックな表現に転送する。
論文 参考訳(メタデータ) (2023-07-23T14:01:05Z) - KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation [61.08389704326803]
VLN(Vision-and-Language Navigation)は、実シーンにおける自然言語命令に続く遠隔地への移動を可能にするタスクである。
以前のアプローチのほとんどは、ナビゲート可能な候補を表現するために、機能全体やオブジェクト中心の機能を利用している。
本稿では,知識を活用したエージェントナビゲーション能力向上のための知識強化推論モデル(KERM)を提案する。
論文 参考訳(メタデータ) (2023-03-28T08:00:46Z) - What do navigation agents learn about their environment? [39.74076893981299]
本稿では、ポイントゴールナビゲーションエージェントとオブジェクトゴールナビゲーションエージェントのための、エンボディード・アグエント(iSEE)の解釈可能性システムについて紹介する。
これらのエージェントが生成する動的表現をiSEEを用いて探索し,エージェントや環境に関する情報を提示する。
論文 参考訳(メタデータ) (2022-06-17T01:33:43Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
モデルベース強化学習(RL)のための修正目的を提案する。
相互情報に基づく状態空間モデルに,変分エンパワーメントにインスパイアされた用語を統合する。
本研究は,視覚に基づくロボット制御作業における自然な映像背景を用いたアプローチの評価である。
論文 参考訳(メタデータ) (2022-04-18T23:09:23Z) - Glimpse-Attend-and-Explore: Self-Attention for Active Visual Exploration [47.01485765231528]
アクティブな視覚探索は、限られた視野を持つエージェントが部分的な観察に基づいて環境を理解するのを支援することを目的としている。
タスク固有の不確実性マップではなく、自己注意を用いて視覚探索をガイドするGlimpse-Attend-and-Exploreモデルを提案する。
私たちのモデルは、探索を駆動する際のデータセットバイアスに頼らずに、奨励的な結果を提供します。
論文 参考訳(メタデータ) (2021-08-26T11:41:03Z) - Diagnosing Vision-and-Language Navigation: What Really Matters [61.72935815656582]
視覚言語ナビゲーション(VLN)は、エージェントが自然言語の指示に従って視覚環境をナビゲートするマルチモーダルタスクである。
近年の研究では、室内および屋外のVLNタスクのパフォーマンス改善が鈍化している。
本研究では,ナビゲーション中のエージェントの焦点を明らかにするための一連の診断実験を行う。
論文 参考訳(メタデータ) (2021-03-30T17:59:07Z) - Diagnosing the Environment Bias in Vision-and-Language Navigation [102.02103792590076]
VLN(Vision-and-Language Navigation)は、エージェントが自然言語の指示に従い、与えられた環境を探索し、所望の目標地点に到達する必要がある。
VLNを研究する最近の研究は、目に見えない環境でのテストでは、顕著なパフォーマンス低下を観察しており、ニューラルエージェントモデルがトレーニング環境に非常に偏っていることを示している。
本研究では, この環境バイアスの原因を探るため, 環境再分割と機能置換による新しい診断実験を設計する。
論文 参考訳(メタデータ) (2020-05-06T19:24:33Z) - Analyzing Visual Representations in Embodied Navigation Tasks [45.35107294831313]
我々は、最近提案されたプロジェクション重み付き正準相関解析(PWCCA)を用いて、異なるタスクを実行することで、同じ環境で学習した視覚的表現の類似度を測定する。
次に、あるタスクで学習した視覚的表現が、別のタスクに効果的に転送できることを実証的に示す。
論文 参考訳(メタデータ) (2020-03-12T19:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。