Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
- URL: http://arxiv.org/abs/2402.12072v2
- Date: Tue, 9 Jul 2024 07:13:56 GMT
- Title: Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
- Authors: Alexander Auras, Kanchana Vaishnavi Gandikota, Hannah Droege, Michael Moeller,
- Abstract summary: This paper provides an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning.
A special focus lies on point estimators and their robustness against adversarial perturbations.
- Score: 47.34359815600974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper provides an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning. A special focus lies on point estimators and their robustness against adversarial perturbations. In this context results of numerical experiments for a one-dimensional toy problem are provided, showing the robustness of different approaches and empirically verifying theoretical guarantees. Another focus of this review is the exploration of the subspace of data-consistent solutions through explicit guidance to satisfy specific semantic or textural properties.
Related papers
- Learned reconstruction methods for inverse problems: sample error
estimates [0.8702432681310401]
This dissertation addresses the generalization properties of learned reconstruction methods, and specifically to perform their sample error analysis.
A rather general strategy is proposed, whose assumptions are met for a large class of inverse problems and learned methods.
arXiv Detail & Related papers (2023-12-21T17:56:19Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
Cocoercive Variational Inequalities [137.6408511310322]
We consider the problem of finite-sum cocoercive variational inequalities.
For strongly monotone problems it is possible to achieve linear convergence to a solution using this method.
arXiv Detail & Related papers (2022-10-12T08:04:48Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
We propose an alternative spectral method, Spectral Decomposition Representation (SPEDER), that extracts a state-action abstraction from the dynamics without inducing spurious dependence on the data collection policy.
A theoretical analysis establishes the sample efficiency of the proposed algorithm in both the online and offline settings.
An experimental investigation demonstrates superior performance over current state-of-the-art algorithms across several benchmarks.
arXiv Detail & Related papers (2022-08-19T19:01:30Z) - Robust Machine Learning via Privacy/Rate-Distortion Theory [34.28921458311185]
Robust machine learning formulations have emerged to address the prevalent vulnerability of deep neural networks to adversarial examples.
Our work draws the connection between optimal robust learning and the privacy-utility tradeoff problem, which is a generalization of the rate-distortion problem.
This information-theoretic perspective sheds light on the fundamental tradeoff between robustness and clean data performance.
arXiv Detail & Related papers (2020-07-22T21:34:59Z) - Total Deep Variation: A Stable Regularizer for Inverse Problems [71.90933869570914]
We introduce the data-driven general-purpose total deep variation regularizer.
In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks.
We achieve state-of-the-art results for numerous imaging tasks.
arXiv Detail & Related papers (2020-06-15T21:54:15Z) - Regularization of Inverse Problems by Neural Networks [0.0]
Inverse problems arise in a variety of imaging applications including computed tomography, non-destructive testing, and remote sensing.
The characteristic features of inverse problems are the non-uniqueness and instability of their solutions.
Deep learning techniques and neural networks demonstrated to significantly outperform classical solution methods for inverse problems.
arXiv Detail & Related papers (2020-06-06T20:49:12Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
We propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning.
We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.
arXiv Detail & Related papers (2020-01-14T19:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.