IRR: Image Review Ranking Framework for Evaluating Vision-Language Models
- URL: http://arxiv.org/abs/2402.12121v2
- Date: Mon, 16 Dec 2024 16:09:47 GMT
- Title: IRR: Image Review Ranking Framework for Evaluating Vision-Language Models
- Authors: Kazuki Hayashi, Kazuma Onishi, Toma Suzuki, Yusuke Ide, Seiji Gobara, Shigeki Saito, Yusuke Sakai, Hidetaka Kamigaito, Katsuhiko Hayashi, Taro Watanabe,
- Abstract summary: Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation.
We propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives.
We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances.
- Score: 25.014419357308192
- License:
- Abstract: Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation. However, while these models excel at generating factual content, their ability to generate and evaluate texts reflecting perspectives on the same image, depending on the context, has not been sufficiently explored. To address this, we propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives. IRR evaluates LVLMs by measuring how closely their judgments align with human interpretations. We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances. The datasets are available at https://hf.co/datasets/naist-nlp/Wiki-ImageReview1.0. Our results indicate that, although LVLMs exhibited consistent performance across languages, their correlation with human annotations was insufficient, highlighting the need for further advancements. These findings highlight the limitations of current evaluation methods and the need for approaches that better capture human reasoning in Vision & Language tasks.
Related papers
- Interleaved Scene Graph for Interleaved Text-and-Image Generation Assessment [53.45813302866466]
We present ISG, a comprehensive evaluation framework for interleaved text-and-image generation.
ISG evaluates responses on four levels of granularity: holistic, structural, block-level, and image-specific.
In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories.
arXiv Detail & Related papers (2024-11-26T07:55:57Z) - TypeScore: A Text Fidelity Metric for Text-to-Image Generative Models [39.06617653124486]
We introduce a new evaluation framework called TypeScore to assess a model's ability to generate images with high-fidelity embedded text.
Our proposed metric demonstrates greater resolution than CLIPScore to differentiate popular image generation models.
arXiv Detail & Related papers (2024-11-02T07:56:54Z) - A Novel Evaluation Framework for Image2Text Generation [15.10524860121122]
We propose an evaluation framework rooted in a modern large language model (LLM) capable of image generation.
A high similarity score suggests that the image captioning model has accurately generated textual descriptions.
A low similarity score indicates discrepancies, revealing potential shortcomings in the model's performance.
arXiv Detail & Related papers (2024-08-03T09:27:57Z) - FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - Vision Language Model-based Caption Evaluation Method Leveraging Visual
Context Extraction [27.00018283430169]
This paper presents VisCE$2$, a vision language model-based caption evaluation method.
Our method focuses on visual context, which refers to the detailed content of images, including objects, attributes, and relationships.
arXiv Detail & Related papers (2024-02-28T01:29:36Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
Visual grounding (VG) aims to establish fine-grained alignment between vision and language.
Most existing VG datasets are constructed using simple description texts.
We propose a novel benchmark of underlineScene underlineKnowledge-guided underlineVisual underlineGrounding.
arXiv Detail & Related papers (2023-07-21T13:06:02Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
A document summary's quality can be assessed by human annotators on various criteria, both objective ones like grammar and correctness, and subjective ones like informativeness, succinctness, and appeal.
Most of the automatic evaluation methods like BLUE/ROUGE may be not able to adequately capture the above dimensions.
We propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects.
arXiv Detail & Related papers (2023-03-27T10:40:59Z) - Backretrieval: An Image-Pivoted Evaluation Metric for Cross-Lingual Text
Representations Without Parallel Corpora [19.02834713111249]
Backretrieval is shown to correlate with ground truth metrics on annotated datasets.
Our experiments conclude with a case study on a recipe dataset without parallel cross-lingual data.
arXiv Detail & Related papers (2021-05-11T12:14:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.