Enabling Weak LLMs to Judge Response Reliability via Meta Ranking
- URL: http://arxiv.org/abs/2402.12146v3
- Date: Fri, 31 May 2024 03:25:42 GMT
- Title: Enabling Weak LLMs to Judge Response Reliability via Meta Ranking
- Authors: Zijun Liu, Boqun Kou, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu,
- Abstract summary: We propose a novel cross-query-comparison-based method called $textitMeta Ranking$ (MR)
MR assesses reliability by pairwisely ranking the target query-response pair with multiple reference query-response pairs.
We show that MR can enhance strong LLMs' performance in two practical applications: model cascading and instruction tuning.
- Score: 38.63721941742435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the strong performance of large language models (LLMs) across a wide range of tasks, they still have reliability issues. Previous studies indicate that strong LLMs like GPT-4-turbo excel in evaluating the reliability of responses from LLMs, but face efficiency and local deployment issues. Thus, to enable weak LLMs to effectively assess the reliability of LLM responses, we propose a novel cross-query-comparison-based method called $\textit{Meta Ranking}$ (MR). Unlike previous few-shot methods that solely based on in-context learning capabilities in LLMs, MR assesses reliability by pairwisely ranking the target query-response pair with multiple reference query-response pairs. We found that MR is highly effective in error detection for LLM responses, where weak LLMs, such as Phi-2, could surpass strong baselines like GPT-3.5-turbo, requiring only five reference samples and significantly improving efficiency. We further demonstrate that MR can enhance strong LLMs' performance in two practical applications: model cascading and instruction tuning. In model cascading, we combine open- and closed-source LLMs to achieve performance comparable to GPT-4-turbo with lower costs. In instruction tuning, we use MR for iterative training data filtering, significantly reducing data processing time and enabling LLaMA-7B and Phi-2 to surpass Alpaca-13B with fewer training tokens. These results underscore the high potential of MR in both efficiency and effectiveness.
Related papers
- LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
We introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions.
To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline.
Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback.
arXiv Detail & Related papers (2024-10-09T01:25:10Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - LLM-Oriented Retrieval Tuner [25.563739811422874]
Dense Retrieval (DR) is now considered as a promising tool to enhance the memorization capacity of Large Language Models (LLM)
We propose an efficient LLM-Oriented Retrieval Tuner, namely LMORT, which decouples DR capacity from base LLM.
Our approach could achieve competitive zero-shot retrieval performance compared to a range of strong DR models.
arXiv Detail & Related papers (2024-03-04T12:50:25Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Large Language Model Cascades with Mixture of Thoughts Representations
for Cost-efficient Reasoning [19.472937476936636]
Large language models (LLMs) have exhibited remarkable performance in a variety of tasks, but this strong performance often comes with the high expense of using paid API services.
In this paper, we are motivated to study building an LLM cascade to save the cost of using LLMs.
Our proposed cascades can achieve performance comparable to using solely the stronger LLM but require only 40% of its cost.
arXiv Detail & Related papers (2023-10-04T18:21:17Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot
Relation Extractors [11.28397947587596]
Fine-tuning large language models (LLMs) on large-scale instruction-following datasets substantially improves their performance on a wide range of NLP tasks.
However, even advanced instruction-tuned LLMs still fail to outperform small LMs on relation extraction (RE)
We propose QA4RE, a framework that aligns RE with question answering (QA), a predominant task in instruction-tuning datasets.
arXiv Detail & Related papers (2023-05-18T17:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.