LLM-Oriented Retrieval Tuner
- URL: http://arxiv.org/abs/2403.01999v1
- Date: Mon, 4 Mar 2024 12:50:25 GMT
- Title: LLM-Oriented Retrieval Tuner
- Authors: Si Sun, Hanqing Zhang, Zhiyuan Liu, Jie Bao, Dawei Song
- Abstract summary: Dense Retrieval (DR) is now considered as a promising tool to enhance the memorization capacity of Large Language Models (LLM)
We propose an efficient LLM-Oriented Retrieval Tuner, namely LMORT, which decouples DR capacity from base LLM.
Our approach could achieve competitive zero-shot retrieval performance compared to a range of strong DR models.
- Score: 25.563739811422874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense Retrieval (DR) is now considered as a promising tool to enhance the
memorization capacity of Large Language Models (LLM) such as GPT3 and GPT-4 by
incorporating external memories. However, due to the paradigm discrepancy
between text generation of LLM and DR, it is still an open challenge to
integrate the retrieval and generation tasks in a shared LLM. In this paper, we
propose an efficient LLM-Oriented Retrieval Tuner, namely LMORT, which
decouples DR capacity from base LLM and non-invasively coordinates the
optimally aligned and uniform layers of the LLM towards a unified DR space,
achieving an efficient and effective DR without tuning the LLM itself. The
extensive experiments on six BEIR datasets show that our approach could achieve
competitive zero-shot retrieval performance compared to a range of strong DR
models while maintaining the generation ability of LLM.
Related papers
- Sequential Large Language Model-Based Hyper-Parameter Optimization [0.0]
This study introduces SLLMBO, an innovative framework that leverages Large Language Models (LLMs)
By addressing limitations in recent fully LLM-based methods, SLLMBO achieves more robust optimization.
benchmarking evaluates multiple LLMs, including GPT-3.5-turbo, GPT-4o, Claude-Sonnet-3.5, and Gemini-1.5-flash.
arXiv Detail & Related papers (2024-10-27T00:50:30Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains.
This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (1B parameters) LLMs.
arXiv Detail & Related papers (2024-06-28T17:16:03Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
This paper describes a unified system for hallucination detection of LLMs.
It wins the second prize in the model-agnostic track of the SemEval-2024 Task 6.
arXiv Detail & Related papers (2024-02-20T11:01:39Z) - Enabling Weak LLMs to Judge Response Reliability via Meta Ranking [38.63721941742435]
We propose a novel cross-query-comparison-based method called $textitMeta Ranking$ (MR)
MR assesses reliability by pairwisely ranking the target query-response pair with multiple reference query-response pairs.
We show that MR can enhance strong LLMs' performance in two practical applications: model cascading and instruction tuning.
arXiv Detail & Related papers (2024-02-19T13:57:55Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.