Mixed Gaussian Flow for Diverse Trajectory Prediction
- URL: http://arxiv.org/abs/2402.12238v1
- Date: Mon, 19 Feb 2024 15:48:55 GMT
- Title: Mixed Gaussian Flow for Diverse Trajectory Prediction
- Authors: Jiahe Chen, Jinkun Cao, Dahua Lin, Kris Kitani, Jiangmiao Pang
- Abstract summary: We propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold.
The model shows a better capacity for generating diverse trajectory patterns.
We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories.
- Score: 78.00204650749453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing trajectory prediction studies intensively leverage generative
models. Normalizing flow is one of the genres with the advantage of being
invertible to derive the probability density of predicted trajectories.
However, mapping from a standard Gaussian by a flow-based model hurts the
capacity to capture complicated patterns of trajectories, ignoring the
under-represented motion intentions in the training data. To solve the problem,
we propose a flow-based model to transform a mixed Gaussian prior into the
future trajectory manifold. The model shows a better capacity for generating
diverse trajectory patterns. Also, by associating each sub-Gaussian with a
certain subspace of trajectories, we can generate future trajectories with
controllable motion intentions. In such a fashion, the flow-based model is not
encouraged to simply seek the most likelihood of the intended manifold anymore
but a family of controlled manifolds with explicit interpretability. Our
proposed method is demonstrated to show state-of-the-art performance in the
quantitative evaluation of sampling well-aligned trajectories in top-M
generated candidates. We also demonstrate that it can generate diverse,
controllable, and out-of-distribution trajectories. Code is available at
https://github.com/mulplue/MGF.
Related papers
- Stochastic Sampling from Deterministic Flow Models [8.849981177332594]
We present a method to turn flow models into a family of differential equations (SDEs) that have the same marginal distributions.
We empirically demonstrate advantages of our method on a toy Gaussian setup and on the large scale ImageNet generation task.
arXiv Detail & Related papers (2024-10-03T05:18:28Z) - Flow Map Matching [15.520853806024943]
Flow map matching is an algorithm that learns the two-time flow map of an underlying ordinary differential equation.
We show that flow map matching leads to high-quality samples with significantly reduced sampling cost compared to diffusion or interpolant methods.
arXiv Detail & Related papers (2024-06-11T17:41:26Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Discrete Denoising Flows [87.44537620217673]
We introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs)
In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias.
We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.
arXiv Detail & Related papers (2021-07-24T14:47:22Z) - Diverse Sampling for Normalizing Flow Based Trajectory Forecasting [34.01303881881315]
We propose Diversity Sampling for Flow (DSF) to improve the quality and diversity of trajectory samples from a pre-trained flow model.
DSF is easy to implement, and we show that it offers a simple plug-in improvement for several existing flow-based forecasting models.
arXiv Detail & Related papers (2020-11-30T18:23:29Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z) - Flows for simultaneous manifold learning and density estimation [12.451050883955071]
manifold-learning flows (M-flows) represent datasets with a manifold structure more faithfully.
M-flows learn the data manifold and allow for better inference than standard flows in the ambient data space.
arXiv Detail & Related papers (2020-03-31T02:07:48Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.