MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction
- URL: http://arxiv.org/abs/2402.12238v2
- Date: Wed, 15 Jan 2025 11:52:13 GMT
- Title: MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction
- Authors: Jiahe Chen, Jinkun Cao, Dahua Lin, Kris Kitani, Jiangmiao Pang,
- Abstract summary: We propose constructing a mixed Gaussian prior for a normalizing flow model for trajectory prediction.
Our method achieves state-of-the-art performance in the evaluation of both trajectory alignment and diversity on the popular UCY/ETH and SDD datasets.
- Score: 72.70572835589158
- License:
- Abstract: To predict future trajectories, the normalizing flow with a standard Gaussian prior suffers from weak diversity. The ineffectiveness comes from the conflict between the fact of asymmetric and multi-modal distribution of likely outcomes and symmetric and single-modal original distribution and supervision losses. Instead, we propose constructing a mixed Gaussian prior for a normalizing flow model for trajectory prediction. The prior is constructed by analyzing the trajectory patterns in the training samples without requiring extra annotations while showing better expressiveness and being multi-modal and asymmetric. Besides diversity, it also provides better controllability for probabilistic trajectory generation. We name our method Mixed Gaussian Flow (MGF). It achieves state-of-the-art performance in the evaluation of both trajectory alignment and diversity on the popular UCY/ETH and SDD datasets. Code is available at https://github.com/mulplue/MGF.
Related papers
- Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting [4.714246221974192]
We develop a novel probabilistic irregular time series forecasting model, Marginalization Consistent Mixtures of Separable Flows (moses)
moses outperforms other state-of-the-art marginalization consistent models, performs on par with ProFITi, but different from ProFITi, guarantee marginalization consistency.
arXiv Detail & Related papers (2024-06-11T13:28:43Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Batch and match: black-box variational inference with a score-based divergence [26.873037094654826]
We propose batch and match (BaM) as an alternative approach to blackbox variational inference (BBVI) based on a score-based divergence.
We show that BaM converges in fewer evaluations than leading implementations of BBVI based on ELBO.
arXiv Detail & Related papers (2024-02-22T18:20:22Z) - Piecewise Normalizing Flows [0.0]
A mismatch between the topology of the target and the base can result in a poor performance.
A number of different works have attempted to modify the topology of the base distribution to better match the target.
We introduce piecewise normalizing flows which divide the target distribution into clusters, with topologies that better match the standard normal base distribution.
arXiv Detail & Related papers (2023-05-04T15:30:10Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Resampling Base Distributions of Normalizing Flows [0.0]
We introduce a base distribution for normalizing flows based on learned rejection sampling.
We develop suitable learning algorithms using both maximizing the log-likelihood and the optimization of the reverse Kullback-Leibler divergence.
arXiv Detail & Related papers (2021-10-29T14:44:44Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.