Exact Ansatz of Fermion-Boson Systems for a Quantum Device
- URL: http://arxiv.org/abs/2402.12273v1
- Date: Mon, 19 Feb 2024 16:38:57 GMT
- Title: Exact Ansatz of Fermion-Boson Systems for a Quantum Device
- Authors: Samuel Warren, Yuchen Wang, Carlos L. Benavides-Riveros and David A.
Mazziotti
- Abstract summary: An exact ansatz for the eigenstate problem of mixed fermion-boson systems can be implemented on quantum devices.
Our results demonstrate that the CSE is a powerful tool in the development of quantum algorithms for solving general fermion-boson many-body problems.
- Score: 5.915403570478968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an exact ansatz for the eigenstate problem of mixed fermion-boson
systems that can be implemented on quantum devices. Based on a generalization
of the electronic contracted Schr\"odinger equation (CSE), our approach guides
a trial wave function to the ground state of any arbitrary mixed Hamiltonian by
directly measuring residuals of the mixed CSE on a quantum device. Unlike
density-functional and coupled-cluster theories applied to electron-phonon or
electron-photon systems, the accuracy of our approach is not limited by the
unknown exchange-correlation functional or the uncontrolled form of the
exponential ansatz. To test the performance of the method, we study the
Tavis-Cummings model, commonly used in polaritonic quantum chemistry. Our
results demonstrate that the CSE is a powerful tool in the development of
quantum algorithms for solving general fermion-boson many-body problems.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Simulating electronic structure on bosonic quantum computers [35.884125235274865]
One of the most promising applications of quantum computing is the simulation of many-fermion problems.
We show how an electronic structure Hamiltonian can be transformed into a system of qumodes through qubit-assisted fermion-to-qumode mapping.
arXiv Detail & Related papers (2024-04-16T02:04:11Z) - Utilizing Quantum Processor for the Analysis of Strongly Correlated Materials [34.63047229430798]
This study introduces a systematic approach for analyzing strongly correlated systems by adapting the conventional quantum cluster method to a quantum circuit model.
We have developed a more concise formula for calculating the cluster's Green's function, requiring only real-number computations on the quantum circuit instead of complex ones.
arXiv Detail & Related papers (2024-04-03T06:53:48Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - A Hybrid Quantum-Classical Method for Electron-Phonon Systems [40.80274768055247]
We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
arXiv Detail & Related papers (2023-02-20T08:08:51Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.