A Hybrid Quantum-Classical Method for Electron-Phonon Systems
- URL: http://arxiv.org/abs/2302.09824v2
- Date: Mon, 4 Sep 2023 07:03:15 GMT
- Title: A Hybrid Quantum-Classical Method for Electron-Phonon Systems
- Authors: M. Michael Denner, Alexander Miessen, Haoran Yan, Ivano Tavernelli,
Titus Neupert, Eugene Demler, Yao Wang
- Abstract summary: We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
- Score: 40.80274768055247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactions between electrons and phonons play a crucial role in quantum
materials. Yet, there is no universal method that would simultaneously
accurately account for strong electron-phonon interactions and electronic
correlations. By combining methods of the variational quantum eigensolver and
the variational non-Gaussian solver, we develop a hybrid quantum-classical
algorithm suitable for this type of correlated systems. This hybrid method
tackles systems with arbitrarily strong electron-phonon coupling without
increasing the number of required qubits and quantum gates, as compared to
purely electronic models. We benchmark the new method by applying it to the
paradigmatic Hubbard-Holstein model at half filling, and show that it correctly
captures the competition between charge density wave and antiferromagnetic
phases, quantitatively consistent with exact diagonalization.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Exact Ansatz of Fermion-Boson Systems for a Quantum Device [5.915403570478968]
An exact ansatz for the eigenstate problem of mixed fermion-boson systems can be implemented on quantum devices.
Our results demonstrate that the CSE is a powerful tool in the development of quantum algorithms for solving general fermion-boson many-body problems.
arXiv Detail & Related papers (2024-02-19T16:38:57Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Say NO to Optimization: A Non-Orthogonal Quantum Eigensolver [0.0]
A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers.
We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans"atze.
arXiv Detail & Related papers (2022-05-18T16:20:36Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Many Electrons and the Photon Field -- The many-body structure of
nonrelativistic quantum electrodynamics [0.0]
We show how to turn electronic-structure methods into polaritonic-structure methods that are accurate from the weak to the strong-coupling regime.
We discuss how to adopt standard algorithms of electronic-structure methods to adhere to the new hybrid Fermi-Bose statistics.
arXiv Detail & Related papers (2021-02-23T11:00:06Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.