Ontology Enhanced Claim Detection
- URL: http://arxiv.org/abs/2402.12282v1
- Date: Mon, 19 Feb 2024 16:50:58 GMT
- Title: Ontology Enhanced Claim Detection
- Authors: Zehra Melce H\"us\"unbeyi and Tatjana Scheffler
- Abstract summary: We propose an ontology enhanced model for sentence based claim detection.
We fused knowledge base with BERT sentence embeddings to perform claim detection for the ClaimBuster and the NewsClaims datasets.
Our approach showed the best results with these small-sized unbalanced datasets, compared to other statistical and neural machine learning models.
- Score: 1.0878040851637998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an ontology enhanced model for sentence based claim detection. We
fused ontology embeddings from a knowledge base with BERT sentence embeddings
to perform claim detection for the ClaimBuster and the NewsClaims datasets. Our
ontology enhanced approach showed the best results with these small-sized
unbalanced datasets, compared to other statistical and neural machine learning
models. The experiments demonstrate that adding domain specific features
(either trained word embeddings or knowledge graph metadata) can improve
traditional ML methods. In addition, adding domain knowledge in the form of
ontology embeddings helps avoid the bias encountered in neural network based
models, for example the pure BERT model bias towards larger classes in our
small corpus.
Related papers
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - Pruning neural network models for gene regulatory dynamics using data and domain knowledge [24.670514977455202]
We propose DASH, a framework that guides network pruning by using domain-specific structural information in model fitting.
We show that DASH, using knowledge about gene interaction partners within the putative regulatory network, outperforms general pruning methods by a large margin.
arXiv Detail & Related papers (2024-03-05T23:02:55Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
We show that Bayesian neural networks are more efficient than ensemble based techniques in capturing uncertainty.
Our findings also reveal some key drawbacks of the ensemble techniques, which was recently shown to be more effective than Monte Carlo dropouts.
arXiv Detail & Related papers (2021-04-02T06:02:11Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
This paper proposes a novel federated learning approach for deep learning architectures in the medical domain.
Local-statistic batch normalization (BN) layers are introduced, resulting in collaboratively-trained, yet center-specific models.
We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets.
arXiv Detail & Related papers (2020-08-17T15:49:30Z) - Domain Knowledge Integration By Gradient Matching For Sample-Efficient
Reinforcement Learning [0.0]
We propose a gradient matching algorithm to improve sample efficiency by utilizing target slope information from the dynamics to aid the model-free learner.
We demonstrate this by presenting a technique for matching the gradient information from the model-based learner with the model-free component in an abstract low-dimensional space.
arXiv Detail & Related papers (2020-05-28T05:02:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.