論文の概要: Triple-Encoders: Representations That Fire Together, Wire Together
- arxiv url: http://arxiv.org/abs/2402.12332v2
- Date: Sat, 13 Jul 2024 17:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 01:55:15.607285
- Title: Triple-Encoders: Representations That Fire Together, Wire Together
- Title(参考訳): トリプルエンコーダ:一緒に火を放ち、一緒に結ぶ表現
- Authors: Justus-Jonas Erker, Florian Mai, Nils Reimers, Gerasimos Spanakis, Iryna Gurevych,
- Abstract要約: コントラスト学習(Contrastive Learning)は、バイエンコーダを介して発話間の相対距離を埋め込み空間に符号化する表現学習法である。
本研究では,これら独立に符号化された発話から分散発話混合物を効率よく計算する三重エンコーダを提案する。
トリプルエンコーダはバイエンコーダよりも大幅に改善され、シングルベクトル表現モデルよりもゼロショットの一般化が向上することがわかった。
- 参考スコア(独自算出の注目度): 51.15206713482718
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Search-based dialog models typically re-encode the dialog history at every turn, incurring high cost. Curved Contrastive Learning, a representation learning method that encodes relative distances between utterances into the embedding space via a bi-encoder, has recently shown promising results for dialog modeling at far superior efficiency. While high efficiency is achieved through independently encoding utterances, this ignores the importance of contextualization. To overcome this issue, this study introduces triple-encoders, which efficiently compute distributed utterance mixtures from these independently encoded utterances through a novel hebbian inspired co-occurrence learning objective in a self-organizing manner, without using any weights, i.e., merely through local interactions. Empirically, we find that triple-encoders lead to a substantial improvement over bi-encoders, and even to better zero-shot generalization than single-vector representation models without requiring re-encoding. Our code (https://github.com/UKPLab/acl2024-triple-encoders) and model (https://huggingface.co/UKPLab/triple-encoders-dailydialog) are publicly available.
- Abstract(参考訳): 検索ベースのダイアログモデルは通常、すべてのターンでダイアログ履歴を再エンコードし、高いコストを発生させる。
音声間の相対的距離をバイエンコーダで符号化する表現学習法であるCurved Contrastive Learningは,最近,対話モデリングにおいて,はるかに優れた効率で有望な結果を示した。
高効率は独立して発話を符号化することで達成されるが、これは文脈化の重要性を無視する。
そこで本研究では,これら独立に符号化された発話からの分散発話混合物を,局所的な相互作用によってのみ重みを使わずに,新規なヘビアンにインスパイアされた共起学習目標を自己組織的に効率的に計算する三重エンコーダを提案する。
経験的に、トリプルエンコーダはバイエンコーダよりも大幅に改善され、また再エンコーダを必要としない単一ベクトル表現モデルよりもゼロショットの一般化も改善される。
私たちのコード(https://github.com/UKPLab/acl2024-triple-encoders)とモデル(https://huggingface.co/UKPLab/triple-encoders-dailydialog)が公開されています。
関連論文リスト
- Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - Sparse Autoencoders Enable Scalable and Reliable Circuit Identification in Language Models [0.0]
本稿では,大規模言語モデルにおける解釈可能な回路を発見するための,効率的かつ堅牢な手法を提案する。
本稿では, 慎重に設計した正負の例に対して, スパースオートエンコーダを訓練する。
本研究は,スケーラブルかつ効率的な機械的解釈性を実現するための離散スパースオートエンコーダの実現を示唆するものである。
論文 参考訳(メタデータ) (2024-05-21T06:26:10Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
seq2seqタスクは、与えられた入力ソースシーケンスに基づいてターゲットシーケンスを生成することを目的としている。
伝統的に、seq2seqタスクのほとんどはエンコーダによって解決され、ソースシーケンスとデコーダをエンコードしてターゲットテキストを生成する。
最近、デコーダのみの言語モデルをseq2seqタスクに直接適用する、多くの新しいアプローチが出現しました。
論文 参考訳(メタデータ) (2023-04-08T15:44:29Z) - Trans-Encoder: Unsupervised sentence-pair modelling through self- and
mutual-distillations [22.40667024030858]
バイエンコーダは固定次元の文表現を生成し、計算効率が良い。
クロスエンコーダは、アテンションヘッドを利用して、より優れたパフォーマンスのために文間相互作用を利用することができる。
Trans-Encoderは、2つの学習パラダイムを反復的なジョイントフレームワークに統合し、拡張されたバイ・エンコーダとクロス・エンコーダを同時に学習する。
論文 参考訳(メタデータ) (2021-09-27T14:06:47Z) - Uni-Encoder: A Fast and Accurate Response Selection Paradigm for
Generation-Based Dialogue Systems [17.041715422600504]
我々はUni-Encoderと呼ばれる新しい符号化パラダイムを開発した。
コンテクストを一度だけエンコードしながら、クロスエンコーダのように各ペアに完全に注意を払っている。
計算効率の高い4つのベンチマークデータセットに対して、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2021-06-02T16:14:51Z) - Rethinking Text Line Recognition Models [57.47147190119394]
2つのデコーダファミリー(コネクショニスト時間分類と変換器)と3つのエンコーダモジュール(双方向LSTM、自己認識、GRCL)を考える。
広く使用されているシーンと手書きテキストの公開データセットの精度とパフォーマンスを比較します。
より一般的なTransformerベースのモデルとは異なり、このアーキテクチャは任意の長さの入力を処理できる。
論文 参考訳(メタデータ) (2021-04-15T21:43:13Z) - Dual Encoding for Video Retrieval by Text [49.34356217787656]
本稿では,ビデオやクエリを独自の高密度表現に符号化する2つのディープエンコーディングネットワークを提案する。
まず、特定のシングルレベルエンコーダを利用する先行技術と異なり、提案するネットワークはマルチレベルエンコーダを実行する。
第2に、概念ベースまたは潜在空間ベースのいずれかである従来の共通空間学習アルゴリズムとは異なり、ハイブリッド空間学習を導入する。
論文 参考訳(メタデータ) (2020-09-10T15:49:39Z) - Learning Autoencoders with Relational Regularization [89.53065887608088]
データ分散のオートエンコーダを学習するための新しいフレームワークを提案する。
エンフレレーショナル正規化によるモデルと対象分布の差を最小限にする
我々はこのフレームワークを2つのスケーラブルアルゴリズムで実装し、確率的および決定論的オートエンコーダの両方に適用する。
論文 参考訳(メタデータ) (2020-02-07T17:27:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。