論文の概要: An Adversarial Approach to Evaluating the Robustness of Event Identification Models
- arxiv url: http://arxiv.org/abs/2402.12338v2
- Date: Mon, 22 Apr 2024 17:56:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 23:34:03.554385
- Title: An Adversarial Approach to Evaluating the Robustness of Event Identification Models
- Title(参考訳): 事象識別モデルのロバスト性評価のための逆アプローチ
- Authors: Obai Bahwal, Oliver Kosut, Lalitha Sankar,
- Abstract要約: 本稿では,事象分類の特徴を抽出する物理に基づくモーダル分解法について考察する。
得られた分類器は、その堅牢性を評価するために、逆アルゴリズムに対してテストされる。
- 参考スコア(独自算出の注目度): 12.862865254507179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent machine learning approaches are finding active use for event detection and identification that allow real-time situational awareness. Yet, such machine learning algorithms have been shown to be susceptible to adversarial attacks on the incoming telemetry data. This paper considers a physics-based modal decomposition method to extract features for event classification and focuses on interpretable classifiers including logistic regression and gradient boosting to distinguish two types of events: load loss and generation loss. The resulting classifiers are then tested against an adversarial algorithm to evaluate their robustness. The adversarial attack is tested in two settings: the white box setting, wherein the attacker knows exactly the classification model; and the gray box setting, wherein the attacker has access to historical data from the same network as was used to train the classifier, but does not know the classification model. Thorough experiments on the synthetic South Carolina 500-bus system highlight that a relatively simpler model such as logistic regression is more susceptible to adversarial attacks than gradient boosting.
- Abstract(参考訳): インテリジェントな機械学習アプローチは、リアルタイムな状況認識を可能にするイベント検出と識別にアクティブな利用を見つけようとしている。
しかし、このような機械学習アルゴリズムは、受信したテレメトリデータに対する敵攻撃の影響を受けやすいことが示されている。
本稿では、イベント分類の特徴を抽出する物理に基づくモーダル分解法について考察し、ロジスティック回帰と勾配増強を含む解釈可能な分類器に着目し、負荷損失と生成損失の2つのタイプを区別する。
得られた分類器は、その堅牢性を評価するために、逆アルゴリズムに対してテストされる。
敵の攻撃は、攻撃者が分類モデルを正確に知っているホワイトボックス設定と、攻撃者が分類器の訓練に使われたのと同じネットワークから履歴データにアクセスするグレイボックス設定の2つの設定でテストされる。
合成サウスカロライナ500バスシステムに関する詳細な実験では、ロジスティック回帰のような比較的単純なモデルの方が、勾配の上昇よりも敵攻撃の影響を受けやすいことが示されている。
関連論文リスト
- Black-box Adversarial Transferability: An Empirical Study in Cybersecurity Perspective [0.0]
敵対的機械学習では、悪意のあるユーザは、トレーニングまたはテストフェーズ中に、相手の摂動入力をモデルに挿入することで、ディープラーニングモデルを騙そうとします。
サイバー攻撃検知システムにおけるブラックボックスの逆転現象を実証的に検証する。
その結果,攻撃者が対象モデルの内部情報にアクセスできなくても,どんなディープラーニングモデルでも敵攻撃に強い影響を受けやすいことが示唆された。
論文 参考訳(メタデータ) (2024-04-15T06:56:28Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
これにより、システムの学習アルゴリズムを騙すような、衝突する入力セットを作れます。
ホワイトボックス環境では、これらの攻撃は非常に成功しており、ターゲットモデルの予測が偶然よりも悪化する可能性があることを示す。
攻撃による「過度な対応」と、攻撃が生成されたモデルと攻撃が転送されたモデルとのミスマッチという2つの仮説を探索する。
論文 参考訳(メタデータ) (2022-11-23T14:55:44Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - ExAD: An Ensemble Approach for Explanation-based Adversarial Detection [17.455233006559734]
説明手法のアンサンブルを用いて逆例を検出するフレームワークであるExADを提案する。
3つの画像データセットに対する6つの最先端の敵攻撃によるアプローチの評価を行った。
論文 参考訳(メタデータ) (2021-03-22T00:53:07Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
侵入検知システムを強化するための機械学習(ML)が重要な研究対象となっている。
モデルの再トレーニングは、十分な量のデータを取得するのに必要なタイムウインドウのために、ネットワークが攻撃を受けやすいようにする。
ここでは、「ワンショットラーニング」と呼ばれる補完的なアプローチで、新しい攻撃クラスを識別するために、新しい攻撃クラスの限られた例を用いる。
Siamese Networkは、機能ではなく、ペアの類似性に基づいてクラスを区別するように訓練されており、新しい、以前は目に見えない攻撃を識別することができる。
論文 参考訳(メタデータ) (2020-06-27T11:40:01Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z) - Adversarial Detection and Correction by Matching Prediction
Distributions [0.0]
この検出器は、MNISTとFashion-MNISTに対するCarini-WagnerやSLIDEのような強力な攻撃をほぼ完全に中和する。
本手法は,攻撃者がモデルと防御の両方について十分な知識を持つホワイトボックス攻撃の場合においても,なおも敵の例を検出することができることを示す。
論文 参考訳(メタデータ) (2020-02-21T15:45:42Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。