LoRA+: Efficient Low Rank Adaptation of Large Models
- URL: http://arxiv.org/abs/2402.12354v2
- Date: Thu, 4 Jul 2024 18:33:00 GMT
- Title: LoRA+: Efficient Low Rank Adaptation of Large Models
- Authors: Soufiane Hayou, Nikhil Ghosh, Bin Yu,
- Abstract summary: We show that Low Rank Adaptation (LoRA) leads to suboptimal finetuning of models with large width (embedding dimension)
We then show that this suboptimality of LoRA can be corrected simply by setting different learning rates for the LoRA adapter matrices A and B with a well-chosen ratio.
In our experiments, LoRA$+$ improves performance (1-2 $%$ improvements) and finetuning speed (up to $sim$ 2X SpeedUp) at the same computational cost as LoRA.
- Score: 13.074320303580361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we show that Low Rank Adaptation (LoRA) as originally introduced in Hu et al. (2021) leads to suboptimal finetuning of models with large width (embedding dimension). This is due to the fact that adapter matrices A and B in LoRA are updated with the same learning rate. Using scaling arguments for large width networks, we demonstrate that using the same learning rate for A and B does not allow efficient feature learning. We then show that this suboptimality of LoRA can be corrected simply by setting different learning rates for the LoRA adapter matrices A and B with a well-chosen ratio. We call this proposed algorithm LoRA$+$. In our extensive experiments, LoRA$+$ improves performance (1-2 $\%$ improvements) and finetuning speed (up to $\sim$ 2X SpeedUp), at the same computational cost as LoRA.
Related papers
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - CoRA: Optimizing Low-Rank Adaptation with Common Subspace of Large Language Models [7.108651381160281]
Low-Rank Adaptation (LoRA) strategy balances efficiency and performance in fine-tuning large models.
We propose textbfCoRA: leveraging shared knowledge to optimize LoRA training by substituting its matrix $B$ with a common subspace from large models.
Our experiments show that the first approach achieves the same efficacy as the original LoRA fine-tuning while being more efficient than halving parameters.
arXiv Detail & Related papers (2024-08-31T12:48:27Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - LoRA Learns Less and Forgets Less [25.09261710396838]
Low-Rank Adaptation (LoRA) is a widely-used parameter-efficient finetuning method for large language models.
We compare the performance of LoRA and full finetuning on two target domains, programming and mathematics.
arXiv Detail & Related papers (2024-05-15T19:27:45Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
We propose ResLoRA, an improved framework of low-rank adaptation (LoRA)
Our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA.
The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-02-28T04:33:20Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers.
This paper presents the RunLoRA framework for efficient implementations of LoRA.
Experiments show up to 28% speedup on language modeling networks.
arXiv Detail & Related papers (2023-12-06T10:54:34Z) - NOLA: Compressing LoRA using Linear Combination of Random Basis [22.76088132446952]
We introduce NOLA, which overcomes the rank one lower bound present in LoRA.
NOLA performs as well as LoRA models with much fewer number of parameters compared to LoRA with rank one, the best compression LoRA can archive.
arXiv Detail & Related papers (2023-10-04T03:30:24Z) - LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models
Fine-tuning [19.08716369943138]
We present LoRA-FA, a memory-efficient fine-tuning method that reduces the activation memory without performance degradation and expensive recomputation.
Our results show that LoRA-FA can always achieve close fine-tuning accuracy across different tasks compared to full parameter fine-tuning and LoRA.
arXiv Detail & Related papers (2023-08-07T05:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.