The Revolution of Multimodal Large Language Models: A Survey
- URL: http://arxiv.org/abs/2402.12451v2
- Date: Thu, 6 Jun 2024 16:13:43 GMT
- Title: The Revolution of Multimodal Large Language Models: A Survey
- Authors: Davide Caffagni, Federico Cocchi, Luca Barsellotti, Nicholas Moratelli, Sara Sarto, Lorenzo Baraldi, Lorenzo Baraldi, Marcella Cornia, Rita Cucchiara,
- Abstract summary: Multimodal Large Language Models (MLLMs) can seamlessly integrate visual and textual modalities.
This paper provides a review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques.
- Score: 46.84953515670248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
Related papers
- Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy [2.294223504228228]
Multimodal learning, a rapidly evolving field in artificial intelligence, seeks to construct more versatile and robust systems.
Inspired by the human ability to assimilate information through many senses, this method enables applications such as text-to-video conversion, visual question answering, and image captioning.
Recent developments in datasets that support multimodal language models (MLLMs) are highlighted in this overview.
arXiv Detail & Related papers (2024-12-23T18:15:19Z) - Survey of different Large Language Model Architectures: Trends, Benchmarks, and Challenges [15.850548556536538]
Large Language Models (LLMs) represent a class of deep learning models adept at understanding natural language.
An advanced subset of these models, known as Multimodal Large Language Models (MLLMs), extends LLM capabilities to process and interpret multiple data modalities.
This survey provides a comprehensive overview of the recent advancements in LLMs.
arXiv Detail & Related papers (2024-12-04T11:14:06Z) - Personalized Multimodal Large Language Models: A Survey [127.9521218125761]
Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities.
This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications.
arXiv Detail & Related papers (2024-12-03T03:59:03Z) - A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
Large language models (MLLMs) integrate text, images, video and audio to enable AI systems for cross-modal understanding and generation.
Book examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning.
Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights.
arXiv Detail & Related papers (2024-11-09T20:56:23Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Veagle: Advancements in Multimodal Representation Learning [0.0]
This paper introduces a novel approach to enhance the multimodal capabilities of existing models.
Our proposed model Veagle, incorporates a unique mechanism inspired by the successes and insights of previous works.
Our results indicate a improvement of 5-6 % in performance, with Veagle outperforming existing models by a notable margin.
arXiv Detail & Related papers (2024-01-18T12:45:25Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.