Evolving AI Collectives to Enhance Human Diversity and Enable Self-Regulation
- URL: http://arxiv.org/abs/2402.12590v2
- Date: Tue, 18 Jun 2024 23:28:46 GMT
- Title: Evolving AI Collectives to Enhance Human Diversity and Enable Self-Regulation
- Authors: Shiyang Lai, Yujin Potter, Junsol Kim, Richard Zhuang, Dawn Song, James Evans,
- Abstract summary: Large language model behavior is shaped by the language of those with whom they interact.
This capacity and their increasing prevalence online portend that they will intentionally or unintentionally "program" one another.
We discuss opportunities for AI cross-moderation and address ethical issues and design challenges associated with creating and maintaining free-formed AI collectives.
- Score: 40.763340315488406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model behavior is shaped by the language of those with whom they interact. This capacity and their increasing prevalence online portend that they will intentionally or unintentionally "program" one another and form emergent AI subjectivities, relationships, and collectives. Here, we call upon the research community to investigate these "societies" of interacting artificial intelligences to increase their rewards and reduce their risks for human society and the health of online environments. We use a small "community" of models and their evolving outputs to illustrate how such emergent, decentralized AI collectives can spontaneously expand the bounds of human diversity and reduce the risk of toxic, anti-social behavior online. Finally, we discuss opportunities for AI cross-moderation and address ethical issues and design challenges associated with creating and maintaining free-formed AI collectives.
Related papers
- Artificial Theory of Mind and Self-Guided Social Organisation [1.8434042562191815]
One of the challenges artificial intelligence (AI) faces is how a collection of agents coordinate their behaviour to achieve goals that are not reachable by any single agent.
We make the case for collective intelligence in a general setting, drawing on recent work from single neuron complexity in neural networks.
We show how our social structures are influenced by our neuro-physiology, our psychology, and our language.
arXiv Detail & Related papers (2024-11-14T04:06:26Z) - AI-enhanced Collective Intelligence [2.5063318977668465]
Humans and AI possess complementary capabilities that can surpass the collective intelligence of either humans or AI in isolation.
This review incorporates perspectives from complex network science to conceptualize a multilayer representation of human-AI collective intelligence.
We explore how agents' diversity and interactions influence the system's collective intelligence and analyze real-world instances of AI-enhanced collective intelligence.
arXiv Detail & Related papers (2024-03-15T16:11:15Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Human-AI Interactions and Societal Pitfalls [1.6413583085553642]
When working with generative artificial intelligence (AI), users may see productivity gains, but the AI-generated content may not match their preferences exactly.
We show that the interplay between individual-level decisions and AI training may lead to societal challenges.
A solution to the homogenization and bias issues is to improve human-AI interactions, enabling personalized outputs without sacrificing productivity.
arXiv Detail & Related papers (2023-09-19T09:09:59Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - A Mental-Model Centric Landscape of Human-AI Symbiosis [31.14516396625931]
We introduce a significantly general version of human-aware AI interaction scheme, called generalized human-aware interaction (GHAI)
We will see how this new framework allows us to capture the various works done in the space of human-AI interaction and identify the fundamental behavioral patterns supported by these works.
arXiv Detail & Related papers (2022-02-18T22:08:08Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
We show that, despite their current huge success, deep learning based AI systems can be easily fooled by subtle adversarial noise.
Based on a case study of skeleton-based human interactions, we propose a novel adversarial attack on interactions.
Our study highlights potential risks in the interaction loop with AI and humans, which need to be carefully addressed when deploying AI systems in safety-critical applications.
arXiv Detail & Related papers (2021-01-17T16:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.