論文の概要: Patient-Centric Knowledge Graphs: A Survey of Current Methods,
Challenges, and Applications
- arxiv url: http://arxiv.org/abs/2402.12608v1
- Date: Tue, 20 Feb 2024 00:07:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 17:47:39.509755
- Title: Patient-Centric Knowledge Graphs: A Survey of Current Methods,
Challenges, and Applications
- Title(参考訳): 患者中心の知識グラフ:現在の方法、課題、応用に関する調査
- Authors: Hassan S. Al Khatib, Subash Neupane, Harish Kumar Manchukonda,
Noorbakhsh Amiri Golilarz, Sudip Mittal, Amin Amirlatifi, Shahram Rahimi
- Abstract要約: 患者中心知識グラフ(PCKG)は、個別の患者ケアに焦点を当てた医療における重要なシフトである。
PCKGは様々な種類の健康データを統合し、患者の健康を包括的に理解する医療専門家に提供します。
本稿はPCKGに関する方法論,課題,機会について概説する。
- 参考スコア(独自算出の注目度): 2.913761513290171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in
healthcare that focuses on individualized patient care by mapping the patient's
health information in a holistic and multi-dimensional way. PCKGs integrate
various types of health data to provide healthcare professionals with a
comprehensive understanding of a patient's health, enabling more personalized
and effective care. This literature review explores the methodologies,
challenges, and opportunities associated with PCKGs, focusing on their role in
integrating disparate healthcare data and enhancing patient care through a
unified health perspective. In addition, this review also discusses the
complexities of PCKG development, including ontology design, data integration
techniques, knowledge extraction, and structured representation of knowledge.
It highlights advanced techniques such as reasoning, semantic search, and
inference mechanisms essential in constructing and evaluating PCKGs for
actionable healthcare insights. We further explore the practical applications
of PCKGs in personalized medicine, emphasizing their significance in improving
disease prediction and formulating effective treatment plans. Overall, this
review provides a foundational perspective on the current state-of-the-art and
best practices of PCKGs, guiding future research and applications in this
dynamic field.
- Abstract(参考訳): 患者中心知識グラフ(PCKG)は、患者の健康情報を全体的かつ多次元的にマッピングすることで、個別化された患者ケアに焦点を当てた医療の重要なシフトである。
PCKGは様々な種類の健康データを統合し、患者の健康を包括的に理解し、よりパーソナライズされ効果的なケアを可能にする。
本報告では,PCKGに関する方法論,課題,機会を考察し,異種医療データの統合と,統合医療の観点からの患者ケアの強化に焦点をあてる。
さらに、オントロジー設計、データ統合技術、知識抽出、知識の構造化表現など、PCKG開発における複雑さについても論じる。
行動可能な医療インサイトのためのPCKGの構築と評価に不可欠な推論、セマンティックサーチ、推論メカニズムなどの高度な技術を強調している。
さらに,パーソナライズ医療におけるpckgsの実用化について検討し,疾患予測の改善と効果的な治療計画の策定にその意義を強調した。
概して、このレビューはpckgsの現状とベストプラクティスに関する基礎的な視点を提供し、このダイナミックな分野における将来の研究と応用を導く。
関連論文リスト
- Patient-centered data science: an integrative framework for evaluating and predicting clinical outcomes in the digital health era [0.0]
本研究では,デジタルヘルス時代の患者中心型データサイエンスのための新たな統合的枠組みを提案する。
従来の臨床データと患者の報告した結果、健康の社会的決定要因、および多次元データを組み合わせて総合的なデジタル患者表現を作成する多次元モデルを開発した。
論文 参考訳(メタデータ) (2024-07-31T02:36:17Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - MD-Manifold: A Medical-Distance-Based Representation Learning Approach
for Medical Concept and Patient Representation [6.795388490479779]
医療分析タスクのための医療概念を表現するには、医療領域の知識と事前のデータ情報を統合する必要がある。
MD-Manifoldは,医療概念と患者表現に対する新しいアプローチを提案する。
これには、重要な医療領域の知識と事前のデータ情報を統合するための、新しいデータ拡張アプローチ、コンセプト距離メトリック、および患者と患者のネットワークが含まれる。
論文 参考訳(メタデータ) (2023-04-30T18:58:32Z) - Medical Pathologies Prediction : Systematic Review and Proposed Approach [0.0]
我々は、医療改善のためのビッグデータ、人工知能、機械学習、ディープラーニングなど、最新の技術の活用に関するさまざまな研究を分析し、検討した。
本稿では,医療データの収集,前処理,クラスタリングに着目した一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-01T13:35:17Z) - Developing a Robust Computable Phenotype Definition Workflow to Describe
Health and Disease in Observational Health Research [0.6465251961564604]
健康情報学は患者の健康データに基づいて構築される。
標準化は、疫学などの分野で使われる一般的な指標である人口統計を計算するために必要である。
患者データを構造化・分析するための標準は存在するが、厳格に定義するための類似のベストプラクティスは存在しない。
論文 参考訳(メタデータ) (2023-03-30T15:29:54Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Enriching Unsupervised User Embedding via Medical Concepts [51.17532619610099]
教師なしのユーザ埋め込みは、患者を人間の監督なしに、固定長のベクターにエンコードすることを目的としている。
臨床ノートから抽出された医療概念は、患者とその臨床カテゴリ間の豊富な関係を含んでいる。
本稿では,2つの臨床コーパスからテキスト文書と医療概念を共同で活用する,非教師なしユーザ埋め込みを提案する。
論文 参考訳(メタデータ) (2022-03-20T18:54:05Z) - Explainable Deep Learning in Healthcare: A Methodological Survey from an
Attribution View [36.025217954247125]
本稿では,今後の研究者や臨床医の方法論として,深部・包括的に解釈可能性の方法を紹介した。
我々は、これらの方法が医療問題にどのように適応し、適用されたか、また、医師がこれらのデータ駆動技術をよりよく理解するのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-12-05T17:12:53Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。