Are LLMs Rational Investors? A Study on Detecting and Reducing the Financial Bias in LLMs
- URL: http://arxiv.org/abs/2402.12713v2
- Date: Mon, 1 Jul 2024 15:42:15 GMT
- Title: Are LLMs Rational Investors? A Study on Detecting and Reducing the Financial Bias in LLMs
- Authors: Yuhang Zhou, Yuchen Ni, Yunhui Gan, Zhangyue Yin, Xiang Liu, Jian Zhang, Sen Liu, Xipeng Qiu, Guangnan Ye, Hongfeng Chai,
- Abstract summary: Large Language Models (LLMs) are increasingly adopted in financial analysis for interpreting complex market data and trends.
Financial Bias Indicators (FBI) is a framework with components like Bias Unveiler, Bias Detective, Bias Tracker, and Bias Antidote.
We evaluate 23 leading LLMs and propose a de-biasing method based on financial causal knowledge.
- Score: 44.53203911878139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly adopted in financial analysis for interpreting complex market data and trends. However, their use is challenged by intrinsic biases (e.g., risk-preference bias) and a superficial understanding of market intricacies, necessitating a thorough assessment of their financial insight. To address these issues, we introduce Financial Bias Indicators (FBI), a framework with components like Bias Unveiler, Bias Detective, Bias Tracker, and Bias Antidote to identify, detect, analyze, and eliminate irrational biases in LLMs. By combining behavioral finance principles with bias examination, we evaluate 23 leading LLMs and propose a de-biasing method based on financial causal knowledge. Results show varying degrees of financial irrationality among models, influenced by their design and training. Models trained specifically on financial datasets may exhibit more irrationality, and even larger financial language models (FinLLMs) can show more bias than smaller, general models. We utilize four prompt-based methods incorporating causal debiasing, effectively reducing financial biases in these models. This work enhances the understanding of LLMs' bias in financial applications, laying the foundation for developing more reliable and rational financial analysis tools.
Related papers
- Gender Bias of LLM in Economics: An Existentialism Perspective [1.024113475677323]
This paper investigates gender bias in large language models (LLMs)
LLMs reinforce gender stereotypes even without explicit gender markers.
We argue that bias in LLMs is not an unintended flaw but a systematic result of their rational processing.
arXiv Detail & Related papers (2024-10-14T01:42:01Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
Large Language Models (LLMs) are being adopted across a wide range of tasks.
Recent research indicates that LLMs can harbor implicit biases even when they pass explicit bias evaluations.
This study highlights that newer or larger language models do not automatically exhibit reduced bias.
arXiv Detail & Related papers (2024-10-13T03:43:18Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
Large Language Models (LLMs) pre-trained on extensive corpora have demonstrated superior performance across various NLP tasks.
We introduce a retrieval-augmented LLMs framework for financial sentiment analysis.
Our approach achieves 15% to 48% performance gain in accuracy and F1 score.
arXiv Detail & Related papers (2023-10-06T05:40:23Z) - Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of
General-Purpose Large Language Models [18.212210748797332]
We introduce a simple yet effective instruction tuning approach to address these issues.
In the experiment, our approach outperforms state-of-the-art supervised sentiment analysis models.
arXiv Detail & Related papers (2023-06-22T03:56:38Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.