Radar-Based Recognition of Static Hand Gestures in American Sign
Language
- URL: http://arxiv.org/abs/2402.12800v1
- Date: Tue, 20 Feb 2024 08:19:30 GMT
- Title: Radar-Based Recognition of Static Hand Gestures in American Sign
Language
- Authors: Christian Schuessler, Wenxuan Zhang, Johanna Br\"aunig, Marcel
Hoffmann, Michael Stelzig, Martin Vossiek
- Abstract summary: This study explores the efficacy of synthetic data generated by an advanced radar ray-tracing simulator.
The simulator employs an intuitive material model that can be adjusted to introduce data diversity.
Despite exclusively training the NN on synthetic data, it demonstrates promising performance when put to the test with real measurement data.
- Score: 17.021656590925005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the fast-paced field of human-computer interaction (HCI) and virtual
reality (VR), automatic gesture recognition has become increasingly essential.
This is particularly true for the recognition of hand signs, providing an
intuitive way to effortlessly navigate and control VR and HCI applications.
Considering increased privacy requirements, radar sensors emerge as a
compelling alternative to cameras. They operate effectively in low-light
conditions without capturing identifiable human details, thanks to their lower
resolution and distinct wavelength compared to visible light.
While previous works predominantly deploy radar sensors for dynamic hand
gesture recognition based on Doppler information, our approach prioritizes
classification using an imaging radar that operates on spatial information,
e.g. image-like data. However, generating large training datasets required for
neural networks (NN) is a time-consuming and challenging process, often falling
short of covering all potential scenarios. Acknowledging these challenges, this
study explores the efficacy of synthetic data generated by an advanced radar
ray-tracing simulator. This simulator employs an intuitive material model that
can be adjusted to introduce data diversity.
Despite exclusively training the NN on synthetic data, it demonstrates
promising performance when put to the test with real measurement data. This
emphasizes the practicality of our methodology in overcoming data scarcity
challenges and advancing the field of automatic gesture recognition in VR and
HCI applications.
Related papers
- RadSimReal: Bridging the Gap Between Synthetic and Real Data in Radar Object Detection With Simulation [6.0158981171030685]
RadSimReal is an innovative physical radar simulation capable of generating synthetic radar images with accompanying annotations.
Our findings demonstrate that training object detection models on RadSimReal data achieves performance levels comparable to models trained and tested on real data from the same dataset.
This innovative tool has the potential to advance the development of computer vision algorithms for radar-based autonomous driving applications.
arXiv Detail & Related papers (2024-04-28T11:55:50Z) - Leveraging Self-Supervised Instance Contrastive Learning for Radar
Object Detection [7.728838099011661]
This paper presents RiCL, an instance contrastive learning framework to pre-train radar object detectors.
We aim to pre-train an object detector's backbone, head and neck to learn with fewer data.
arXiv Detail & Related papers (2024-02-13T12:53:33Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
We propose a novel graph-guided neural network approach for Human Activity Recognition (HAR) in smart homes.
We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home.
Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms.
arXiv Detail & Related papers (2023-11-16T02:43:13Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
A key problem holding up progress in wearable sensor-based human activity recognition is the unavailability of diverse and labeled training data.
We propose an unsupervised statistical feature-guided diffusion model specifically optimized for wearable sensor-based human activity recognition.
By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data.
arXiv Detail & Related papers (2023-05-30T15:12:59Z) - Improved Static Hand Gesture Classification on Deep Convolutional Neural
Networks using Novel Sterile Training Technique [2.534406146337704]
Non-contact hand pose and static gesture recognition have received considerable attention in many applications.
This article presents an efficient data collection approach and a novel technique for deep CNN training by introducing sterile'' images.
Applying the proposed data collection and training methods yields an increase in classification rate of static hand gestures from $85%$ to $93%$.
arXiv Detail & Related papers (2023-05-03T11:10:50Z) - DensePose From WiFi [86.61881052177228]
We develop a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions.
Our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches.
arXiv Detail & Related papers (2022-12-31T16:48:43Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
This paper studies existing LiDAR-based person detectors with a particular focus on mobile robot scenarios.
Experiments revolve around the domain gap between driving and mobile robot scenarios, as well as the modality gap between 3D and 2D LiDAR sensors.
Results provide practical insights into LiDAR-based person detection and facilitate informed decisions for relevant mobile robot designs and applications.
arXiv Detail & Related papers (2021-06-21T16:35:49Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.