論文の概要: More Discriminative Sentence Embeddings via Semantic Graph Smoothing
- arxiv url: http://arxiv.org/abs/2402.12890v1
- Date: Tue, 20 Feb 2024 10:34:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 15:40:24.465741
- Title: More Discriminative Sentence Embeddings via Semantic Graph Smoothing
- Title(参考訳): 意味グラフ平滑化によるより識別的な文埋め込み
- Authors: Chakib Fettal, Lazhar Labiod, Mohamed Nadif
- Abstract要約: セマンティックグラフの平滑化を活用し,事前学習したモデルから得られた文の埋め込みを強化し,テキストクラスタリングと分類タスクの結果を改善する。
提案手法は、8つのベンチマークで検証され、一貫した改善を示し、教師なしおよび教師なし文書分類タスクにおける文埋め込みの改善における意味グラフの平滑化の可能性を示す。
- 参考スコア(独自算出の注目度): 20.610589722626074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores an empirical approach to learn more discriminantive
sentence representations in an unsupervised fashion. Leveraging semantic graph
smoothing, we enhance sentence embeddings obtained from pretrained models to
improve results for the text clustering and classification tasks. Our method,
validated on eight benchmarks, demonstrates consistent improvements, showcasing
the potential of semantic graph smoothing in improving sentence embeddings for
the supervised and unsupervised document categorization tasks.
- Abstract(参考訳): 本稿では,教師なしの方法でより識別力のある文表現を学習するための実証的なアプローチについて検討する。
意味グラフの平滑化を活用し,事前学習モデルから得られた文の埋め込みを強化し,テキストクラスタリングや分類タスクの結果を改善する。
8つのベンチマークで検証された本手法は,教師なしおよび教師なし文書分類タスクにおける文埋め込み改善における意味グラフ平滑化の可能性を示す。
関連論文リスト
- Capturing Fine-grained Semantics in Contrastive Graph Representation
Learning [23.861016307326146]
グラフコントラスト学習(Graph contrastive learning)は、類似のインスタンスを閉じて、異種インスタンスをプッシュするコントラストタスクを定義する。
グラフコントラスト学習の既存の方法は、グラフに存在する多様な意味論の違いを無視している。
本稿では, グラフコントラスト学習法(FSGCL)を提案する。
論文 参考訳(メタデータ) (2023-04-23T14:05:05Z) - Unsupervised Extractive Summarization with Heterogeneous Graph
Embeddings for Chinese Document [5.9630342951482085]
中国語文書にヘテロジニアスグラフ埋め込み (HGE) を組み込んだ教師なし抽出サマリザイトン法を提案する。
実験結果から,本手法は3つの要約データセットにおいて,強いベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2022-11-09T06:07:31Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
対照的な学習を通してテキスト分類のための等化オッズとして知られる公平性の概念を満たす学習公正表現について研究する。
具体的には、まず、公正性制約のある学習表現と条件付き教師付きコントラスト目的との間の関係を理論的に分析する。
論文 参考訳(メタデータ) (2022-05-23T17:38:30Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
基礎となるバイアスのないグラフから学習することで、バイアスのない表現を得るための、原則化された新しい方法を提案する。
この新たな視点に基づいて、そのような基礎となるグラフを明らかにするための2つの補完的手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T18:44:37Z) - Fairness-Aware Node Representation Learning [9.850791193881651]
本研究は,グラフ強化設計によるグラフ対照的学習における公平性問題に対処する。
グラフ上の異なる公平性の概念を導入し、提案されたグラフ拡張のガイドラインとして機能する。
実ソーシャルネットワークにおける実験結果から,提案した拡張により,統計的平等と平等な機会の両面において公平性が向上することを示した。
論文 参考訳(メタデータ) (2021-06-09T21:12:14Z) - Unsupervised Document Embedding via Contrastive Augmentation [48.71917352110245]
本稿では,教師なしで文書表現を学習するためのデータ拡張手法と対比学習手法を提案する。
画像と事前学習に使われる最近のコントラスト的自己教師付き学習アルゴリズムに触発されて、高品質な文書埋め込みは様々なパラフレーズに不変であるべきだと仮定した。
本手法は,文書分類作業におけるSOTA手法よりも最大6.4%の分類誤差率を減少させることができる。
論文 参考訳(メタデータ) (2021-03-26T15:48:52Z) - Multitask Learning for Class-Imbalanced Discourse Classification [74.41900374452472]
マルチタスクアプローチは,現在のベンチマークで7%のマイクロf1コアを改善できることを示す。
また,NLPにおける資源不足問題に対処するための追加手法の比較検討を行った。
論文 参考訳(メタデータ) (2021-01-02T07:13:41Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。