論文の概要: Conditional Logical Message Passing Transformer for Complex Query
Answering
- arxiv url: http://arxiv.org/abs/2402.12954v1
- Date: Tue, 20 Feb 2024 12:17:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 15:33:38.385667
- Title: Conditional Logical Message Passing Transformer for Complex Query
Answering
- Title(参考訳): 複雑なクエリ応答のための条件付き論理メッセージパッシングトランス
- Authors: Chongzhi Zhang, Zhiping Peng, Junhao Zheng, Qianli Ma
- Abstract要約: 我々は、新しい最先端のニューラルCQAモデル、条件付き論理メッセージパッシングトランス(CLMPT)を提案する。
我々は,本手法が性能に影響を与えずに計算コストを削減できることを実証的に検証した。
実験の結果, CLMPTは最先端のニューラルCQAモデルであることがわかった。
- 参考スコア(独自算出の注目度): 24.563963177590434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex Query Answering (CQA) over Knowledge Graphs (KGs) is a challenging
task. Given that KGs are usually incomplete, neural models are proposed to
solve CQA by performing multi-hop logical reasoning. However, most of them
cannot perform well on both one-hop and multi-hop queries simultaneously.
Recent work proposes a logical message passing mechanism based on the
pre-trained neural link predictors. While effective on both one-hop and
multi-hop queries, it ignores the difference between the constant and variable
nodes in a query graph. In addition, during the node embedding update stage,
this mechanism cannot dynamically measure the importance of different messages,
and whether it can capture the implicit logical dependencies related to a node
and received messages remains unclear. In this paper, we propose Conditional
Logical Message Passing Transformer (CLMPT), which considers the difference
between constants and variables in the case of using pre-trained neural link
predictors and performs message passing conditionally on the node type. We
empirically verified that this approach can reduce computational costs without
affecting performance. Furthermore, CLMPT uses the transformer to aggregate
received messages and update the corresponding node embedding. Through the
self-attention mechanism, CLMPT can assign adaptive weights to elements in an
input set consisting of received messages and the corresponding node and
explicitly model logical dependencies between various elements. Experimental
results show that CLMPT is a new state-of-the-art neural CQA model.
- Abstract(参考訳): 知識グラフ(KG)上の複雑なクエリアンサーリング(CQA)は難しい課題です。
KGは通常不完全であるため、マルチホップ論理的推論によってCQAを解くニューラルネットワークが提案されている。
しかし、そのほとんどはワンホップクエリとマルチホップクエリの両方で同時にうまく機能しない。
最近の研究は、事前学習したニューラルネットワーク予測器に基づく論理メッセージパッシング機構を提案する。
one-hopクエリとmulti-hopクエリの両方で有効であるが、クエリグラフの定数ノードと可変ノードの違いを無視する。
さらに、ノード埋め込み更新段階では、このメカニズムは異なるメッセージの重要性を動的に測定することができず、ノードと受信メッセージに関連する暗黙的な論理的依存関係をキャプチャできるかどうかも不明である。
本稿では,事前学習したニューラルネットワーク予測器を用いた場合の定数と変数の差を考慮した条件付き論理メッセージパッシングトランス(CLMPT)を提案し,ノードタイプで条件付きメッセージパッシングを行う。
我々は、このアプローチが性能に影響を与えずに計算コストを削減できることを実証的に検証した。
さらに、CLMPTは変換器を使用して受信したメッセージを集約し、対応するノードの埋め込みを更新する。
自己アテンション機構により、CLMPTは受信メッセージと対応するノードからなる入力セットの要素に適応重みを割り当て、様々な要素間の論理的依存関係を明示的にモデル化することができる。
実験の結果, CLMPTは最先端のニューラルCQAモデルであることがわかった。
関連論文リスト
- Pathformer: Recursive Path Query Encoding for Complex Logical Query Answering [20.521886749524814]
木のような計算グラフ,すなわちクエリツリーをベースとした,Pathformerと呼ばれるニューラルネットワークによる一点埋め込み手法を提案する。
具体的には、Pathformerはクエリ計算ツリーを分岐によってパスクエリシーケンスに分解する。
これにより、Pathformerは将来のコンテキスト情報を完全に活用して、パスクエリの様々な部分間の複雑な相互作用を明示的にモデル化することができる。
論文 参考訳(メタデータ) (2024-06-21T06:02:58Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - Query2Triple: Unified Query Encoding for Answering Diverse Complex
Queries over Knowledge Graphs [29.863085746761556]
単純で複雑なクエリのトレーニングを分離する新しいアプローチであるQuery to Triple (Q2T)を提案する。
提案するQ2Tは, トレーニングだけでなく, モジュール性にも優れ, 様々なニューラルネットワーク予測器に容易に適応できる。
論文 参考訳(メタデータ) (2023-10-17T13:13:30Z) - Tractable Bounding of Counterfactual Queries by Knowledge Compilation [51.47174989680976]
本稿では, パール構造因果モデルにおいて, 因果関係などの部分的特定可能なクエリのバウンダリングの問題について議論する。
最近提案された反復EMスキームは初期化パラメータをサンプリングしてそれらの境界を内部近似する。
シンボルパラメータを実際の値に置き換えた回路構造を,単一のシンボル知識コンパイルによって得られることを示す。
論文 参考訳(メタデータ) (2023-10-05T07:10:40Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQは、マルチタスク学習問題とエンティティペアの分布を回避する、シーングラフ生成の新しい定式化である。
我々は,DETRをベースとしたエンコーダ-デコーダ条件付きクエリを用いて,エンティティラベル空間を大幅に削減する。
実験結果から、TraCQは既存のシングルステージシーングラフ生成法よりも優れており、Visual Genomeデータセットの最先端の2段階メソッドを多く上回っていることがわかった。
論文 参考訳(メタデータ) (2023-06-09T06:02:01Z) - Sequential Query Encoding For Complex Query Answering on Knowledge
Graphs [31.40820604209387]
本稿では,知識グラフ(KG)推論のためのクエリを符号化する代替手段として,シーケンシャルクエリ符号化(SQE)を提案する。
SQEはまず、探索ベースのアルゴリズムを使用して、計算グラフを一連のトークンに線形化し、次にシーケンスエンコーダを使用してベクトル表現を計算する。
その単純さにもかかわらず、SQEはFB15k、FB15k-237、NELLで最先端のニューラルネットワーク符号化性能を示す。
論文 参考訳(メタデータ) (2023-02-25T16:33:53Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Neural-Symbolic Entangled Framework for Complex Query Answering [22.663509971491138]
複雑な問合せ応答のためのニューラル・アンド・エンタングルド・フレームワーク(ENeSy)を提案する。
これにより、ニューラルネットワークとシンボリック推論が互いに強化され、カスケードエラーとKGの不完全性が軽減される。
ENeSyは、特にリンク予測タスクのみでトレーニングモデルの設定において、いくつかのベンチマークでSOTA性能を達成する。
論文 参考訳(メタデータ) (2022-09-19T06:07:10Z) - Conversational Question Reformulation via Sequence-to-Sequence
Architectures and Pretrained Language Models [56.268862325167575]
本稿では、列列列構造と事前学習言語モデル(PLM)を用いた会話型質問修正(CQR)の実証的研究について述べる。
我々はPLMを利用して、CQRタスクの目的である最大推定におけるトークン・トークン・トークン・トークンの独立性の強い仮定に対処する。
我々は、最近導入されたCANARDデータセットの微調整PLMをドメイン内タスクとして評価し、TREC 2019 CAsT Trackのデータからドメイン外タスクとしてモデルを検証する。
論文 参考訳(メタデータ) (2020-04-04T11:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。