Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries
- URL: http://arxiv.org/abs/2402.13043v3
- Date: Tue, 2 Apr 2024 20:06:52 GMT
- Title: Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries
- Authors: Seanie Lee, Jianpeng Cheng, Joris Driesen, Alexandru Coca, Anders Johannsen,
- Abstract summary: Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning.
Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance.
We handle the task of conversation retrieval based on text summaries of the conversations.
A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search.
- Score: 48.243879779374836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations. A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings.
Related papers
- Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search [32.35446999027349]
We leverage both rewritten queries and relevance judgments in the conversational search data to train a better query representation model.
The proposed model -- Query Representation Alignment Conversational Retriever, QRACDR, is tested on eight datasets.
arXiv Detail & Related papers (2024-07-29T17:14:36Z) - ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval [37.24069808198862]
Conversational search requires accurate interpretation of user intent from complex multi-turn contexts.
This paper presents ChatRetriever, which inherits the strong generalization capability of large language models to robustly represent conversational sessions for dense retrieval.
arXiv Detail & Related papers (2024-04-21T07:03:55Z) - ConvSDG: Session Data Generation for Conversational Search [29.211860955861244]
We propose a framework to explore the feasibility of boosting conversational search by using large language models (LLMs) for session data generation.
Within this framework, we design dialogue/session-level and query-level data generation with unsupervised and semi-supervised learning.
The generated data are used to fine-tune the conversational dense retriever.
arXiv Detail & Related papers (2024-03-17T20:34:40Z) - CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data
Generation [32.10366004426449]
We propose CONVERSER, a framework for training conversational dense retrievers with at most 6 examples of in-domain dialogues.
We utilize the in-context learning capability of large language models to generate conversational queries given a passage in the retrieval corpus.
Experimental results on conversational retrieval benchmarks OR-QuAC and TREC CAsT 19 show that the proposed CONVERSER achieves comparable performance to fully-supervised models.
arXiv Detail & Related papers (2023-09-13T06:40:24Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
We propose fullmodel (model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model.
To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
arXiv Detail & Related papers (2023-07-02T13:36:36Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z) - Conversations with Search Engines: SERP-based Conversational Response
Generation [77.1381159789032]
We create a suitable dataset, the Search as a Conversation (SaaC) dataset, for the development of pipelines for conversations with search engines.
We also develop a state-of-the-art pipeline for conversations with search engines, the Conversations with Search Engines (CaSE) using this dataset.
CaSE enhances the state-of-the-art by introducing a supporting token identification module and aprior-aware pointer generator.
arXiv Detail & Related papers (2020-04-29T13:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.