Generalizing measurement-induced phase transitions to information exchange symmetry breaking
- URL: http://arxiv.org/abs/2402.13271v2
- Date: Thu, 6 Jun 2024 22:17:21 GMT
- Title: Generalizing measurement-induced phase transitions to information exchange symmetry breaking
- Authors: Shane P. Kelly, Jamir Marino,
- Abstract summary: Information dynamics is investigated using the R'enyi and von-Neumann entropies of the evolving state.
We show how the entanglement transition can be understood as the spontaneously breaking of the information exchange symmetry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work we investigate the conditions for quantum back action to result in a phase transition in the information dynamics of a monitored system. We introduce a framework that captures a wide range of experiments encompassing probes comprised of projective measurements and probes which more generally transfer quantum information from the system to a quantum computer. Our framework explicitly uses a model of unitary evolution which couples system, apparatus and environment. Information dynamics is investigated using the R\'enyi and von-Neumann entropies of the evolving state, and we construct a replica theory for them. We identify the possible replica symmetries an experiment can possess and discuss their spontaneous symmetry breaking. In particular, we identify a minimum subgroup whose spontaneous symmetry breaking results in an entanglement transition. This symmetry is only possible when the information in the apparatus is as informative about the dynamics of the system as the information transferred to the environment. We call this requirement the information exchange symmetry and quantify it by a relationship between the entropies. We then show how the entanglement transition can be understood as the spontaneously breaking of the information exchange symmetry and without referring to the replica theory. Information exchange symmetry breaking is then shown to generalize the phenomenology of the measurement-induced phase transition (MIPT). We apply this theory to the brickwork quantum-enhanced experiment introduced in an accompanying Letter [1] in the case where the unitaries are chosen from the Haar measure, and identify a distinct universality from the MIPT. This notion of information exchange symmetry breaking generalizes the MIPT, and provides a framework for understanding the dynamics of quantum information in quantum-enhanced experiments.
Related papers
- Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Quantum information spreading in random spin chains with topological
order [0.0]
Tripartite mutual information (TMI) based on operator-based entanglement entropy (EE) is an efficient tool for measuring them.
We study random spin chains that exhibit phase transitions accompanying non-trivial change in topological properties.
Quench dynamics of the EE and TMI display interesting behaviors providing essential perspective concerning encoding of quantum information.
arXiv Detail & Related papers (2022-05-06T04:26:52Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Necessary condition for information transfer under simulated parity-time-symmetric evolution [0.0]
Parity-time (PT) symmetric quantum theory can broaden the scope of quantum dynamics beyond unitary evolution.
A non-trivial information transfer can happen if one side of a composite system is evolved according to a PT-symmetric way.
We prove that the information transfer can only happen when the density matrix and the corresponding measurements contain complex numbers.
arXiv Detail & Related papers (2021-02-26T18:10:01Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.