Deep Hedging with Market Impact
- URL: http://arxiv.org/abs/2402.13326v2
- Date: Thu, 22 Feb 2024 21:25:42 GMT
- Title: Deep Hedging with Market Impact
- Authors: Andrei Neagu and Fr\'ed\'eric Godin and Clarence Simard and Leila
Kosseim
- Abstract summary: We propose a novel general market impact dynamic hedging model based on Deep Reinforcement Learning (DRL)
The optimal policy obtained from the DRL model is analysed using several option hedging simulations and compared to commonly used procedures such as delta hedging.
- Score: 0.20482269513546458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic hedging is the practice of periodically transacting financial
instruments to offset the risk caused by an investment or a liability. Dynamic
hedging optimization can be framed as a sequential decision problem; thus,
Reinforcement Learning (RL) models were recently proposed to tackle this task.
However, existing RL works for hedging do not consider market impact caused by
the finite liquidity of traded instruments. Integrating such feature can be
crucial to achieve optimal performance when hedging options on stocks with
limited liquidity. In this paper, we propose a novel general market impact
dynamic hedging model based on Deep Reinforcement Learning (DRL) that considers
several realistic features such as convex market impacts, and impact
persistence through time. The optimal policy obtained from the DRL model is
analysed using several option hedging simulations and compared to commonly used
procedures such as delta hedging. Results show our DRL model behaves better in
contexts of low liquidity by, among others: 1) learning the extent to which
portfolio rebalancing actions should be dampened or delayed to avoid high
costs, 2) factoring in the impact of features not considered by conventional
approaches, such as previous hedging errors through the portfolio value, and
the underlying asset's drift (i.e. the magnitude of its expected return).
Related papers
- Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
This study presents a Reinforcement Learning-based portfolio management model tailored for high-risk environments.
We implement the model using the Soft Actor-Critic (SAC) agent with a Convolutional Neural Network with Multi-Head Attention.
Tested over two 16-month periods of varying market volatility, the model significantly outperformed benchmarks.
arXiv Detail & Related papers (2024-08-09T23:36:58Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Application of Deep Learning for Factor Timing in Asset Management [21.212548040046133]
More flexible models have better performance in explaining the variance in factor premium of the unseen period.
For flexible models like neural networks, the optimal weights based on their prediction tend to be unstable.
We verify that tilting down the rebalance frequency according to the historical optimal rebalancing scheme can help reduce the transaction costs.
arXiv Detail & Related papers (2024-04-27T21:57:17Z) - Optimizing Portfolio Management and Risk Assessment in Digital Assets
Using Deep Learning for Predictive Analysis [5.015409508372732]
This paper introduces the DQN algorithm into asset management portfolios in a novel and straightforward way.
The performance greatly exceeds the benchmark, which fully proves the effectiveness of the DRL algorithm in portfolio management.
Since different assets are trained separately as environments, there may be a phenomenon of Q value drift among different assets.
arXiv Detail & Related papers (2024-02-25T05:23:57Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
This paper presents a model to generate profitable trades in the stock market using Deep Reinforcement Learning (DRL) algorithms.
We formulate the trading problem as a Partially Observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market.
We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm reporting a 2.68 Sharpe Ratio on unseen data set.
arXiv Detail & Related papers (2022-07-05T11:34:29Z) - Deep Reinforcement Learning and Convex Mean-Variance Optimisation for
Portfolio Management [0.0]
Reinforcement learning (RL) methods do not rely on explicit forecasts and are better suited for multi-stage decision processes.
Experiments were conducted on three markets in different economies with different overall trends.
arXiv Detail & Related papers (2022-02-13T10:12:09Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.