Deep Reinforcement Learning for Long-Short Portfolio Optimization
- URL: http://arxiv.org/abs/2012.13773v8
- Date: Sat, 15 Mar 2025 17:27:19 GMT
- Title: Deep Reinforcement Learning for Long-Short Portfolio Optimization
- Authors: Gang Huang, Xiaohua Zhou, Qingyang Song,
- Abstract summary: This paper constructs a Deep Reinforcement Learning (DRL) portfolio management framework with short-selling mechanisms conforming to actual trading rules.<n>Key innovations include development of a comprehensive short-selling mechanism in continuous trading that accounts for dynamic evolution of transactions across time periods.<n>Compared to traditional approaches, this model delivers superior risk-adjusted returns while reducing maximum drawdown.
- Score: 7.131902599861306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of artificial intelligence, data-driven methods effectively overcome limitations in traditional portfolio optimization. Conventional models primarily employ long-only mechanisms, excluding highly correlated assets to diversify risk. However, incorporating short-selling enables low-risk arbitrage through hedging correlated assets. This paper constructs a Deep Reinforcement Learning (DRL) portfolio management framework with short-selling mechanisms conforming to actual trading rules, exploring strategies for excess returns in China's A-share market. Key innovations include: (1) Development of a comprehensive short-selling mechanism in continuous trading that accounts for dynamic evolution of transactions across time periods; (2) Design of a long-short optimization framework integrating deep neural networks for processing multi-dimensional financial time series with mean Sharpe ratio reward functions. Empirical results show the DRL model with short-selling demonstrates significant optimization capabilities, achieving consistent positive returns during backtesting periods. Compared to traditional approaches, this model delivers superior risk-adjusted returns while reducing maximum drawdown. From an allocation perspective, the DRL model establishes a robust investment style, enhancing defensive capabilities through strategic avoidance of underperforming assets and balanced capital allocation. This research contributes to portfolio theory while providing novel methodologies for quantitative investment practice.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - A Deep Reinforcement Learning Framework For Financial Portfolio Management [3.186092314772714]
It is a portfolio management problem which is solved by deep learning techniques.
Three different instants are used to realize this framework, namely a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory.
We have successfully replicated the original paper, which achieve superior returns, but it doesn't perform as well when applied in the stock market.
arXiv Detail & Related papers (2024-09-03T20:11:04Z) - Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
This study presents a Reinforcement Learning-based portfolio management model tailored for high-risk environments.
We implement the model using the Soft Actor-Critic (SAC) agent with a Convolutional Neural Network with Multi-Head Attention.
Tested over two 16-month periods of varying market volatility, the model significantly outperformed benchmarks.
arXiv Detail & Related papers (2024-08-09T23:36:58Z) - Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation [0.0]
We propose a multi-agent and self-adaptive portfolio optimisation framework integrated with attention mechanisms and time series, namely the MASAAT.
By reconstructing the tokens of financial data in a sequence, the attention-based cross-sectional analysis module and temporal analysis module of each agent can effectively capture the correlations between assets and the dependencies between time points.
The experimental results clearly demonstrate that the MASAAT framework achieves impressive enhancement when compared with many well-known portfolio optimsation approaches.
arXiv Detail & Related papers (2024-04-13T09:10:05Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Combining Transformer based Deep Reinforcement Learning with
Black-Litterman Model for Portfolio Optimization [0.0]
As a model-free algorithm, deep reinforcement learning (DRL) agent learns and makes decisions by interacting with the environment in an unsupervised way.
We propose a hybrid portfolio optimization model combining the DRL agent and the Black-Litterman (BL) model.
Our DRL agent significantly outperforms various comparison portfolio choice strategies and alternative DRL frameworks by at least 42% in terms of accumulated return.
arXiv Detail & Related papers (2024-02-23T16:01:37Z) - Deep Hedging with Market Impact [0.20482269513546458]
We propose a novel general market impact dynamic hedging model based on Deep Reinforcement Learning (DRL)
The optimal policy obtained from the DRL model is analysed using several option hedging simulations and compared to commonly used procedures such as delta hedging.
arXiv Detail & Related papers (2024-02-20T19:08:24Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Gated Deeper Models are Effective Factor Learners [0.9137554315375922]
We present a 5-layer deep neural network that generates more meaningful factors in a 2048-dimensional space.
We evaluate our model over 2,000 stocks from the China market with their recent three years records.
arXiv Detail & Related papers (2023-05-18T04:07:47Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - An intelligent algorithmic trading based on a risk-return reinforcement
learning algorithm [0.0]
This scientific paper propose a novel portfolio optimization model using an improved deep reinforcement learning algorithm.
The proposed algorithm is based on actor-critic architecture, in which the main task of critical network is to learn the distribution of portfolio cumulative return.
A multi-process method is used, called Ape-x, to accelerate the speed of deep reinforcement learning training.
arXiv Detail & Related papers (2022-08-23T03:20:06Z) - Deep Reinforcement Learning and Convex Mean-Variance Optimisation for
Portfolio Management [0.0]
Reinforcement learning (RL) methods do not rely on explicit forecasts and are better suited for multi-stage decision processes.
Experiments were conducted on three markets in different economies with different overall trends.
arXiv Detail & Related papers (2022-02-13T10:12:09Z) - Auto-Transfer: Learning to Route Transferrable Representations [77.30427535329571]
We propose a novel adversarial multi-armed bandit approach which automatically learns to route source representations to appropriate target representations.
We see upwards of 5% accuracy improvements compared with the state-of-the-art knowledge transfer methods.
arXiv Detail & Related papers (2022-02-02T13:09:27Z) - Factor Representation and Decision Making in Stock Markets Using Deep
Reinforcement Learning [1.242591017155152]
We build a portfolio management system using direct deep reinforcement learning to make optimal portfolio choice periodically among S&P500 underlying stocks.
The result shows that an effective learning of market conditions and optimal portfolio allocations can significantly outperform the average market.
arXiv Detail & Related papers (2021-08-03T21:31:46Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - A Design Space Study for LISTA and Beyond [79.76740811464597]
In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms.
This paper revisits the role of unrolling as a design approach for deep networks, to what extent its resulting special architecture is superior, and can we find better?
Using LISTA for sparse recovery as a representative example, we conduct the first thorough design space study for the unrolled models.
arXiv Detail & Related papers (2021-04-08T23:01:52Z) - MAPS: Multi-agent Reinforcement Learning-based Portfolio Management
System [23.657021288146158]
We propose the Multi-Agent reinforcement learning-based Portfolio management System (MAPS)
MAPS is a cooperative system in which each agent is an independent "investor" creating its own portfolio.
Experiment results with 12 years of US market data show that MAPS outperforms most of the baselines in terms of Sharpe ratio.
arXiv Detail & Related papers (2020-07-10T14:08:12Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous.
This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning.
arXiv Detail & Related papers (2020-05-31T12:45:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.