DiffPLF: A Conditional Diffusion Model for Probabilistic Forecasting of
EV Charging Load
- URL: http://arxiv.org/abs/2402.13548v1
- Date: Wed, 21 Feb 2024 06:07:33 GMT
- Title: DiffPLF: A Conditional Diffusion Model for Probabilistic Forecasting of
EV Charging Load
- Authors: Siyang Li, Hui Xiong, Yize Chen
- Abstract summary: We devise a novel Diffusion model termed DiffPLF for Probabilistic Load Forecasting of EV charging.
We propose a task-informed fine-tuning technique to better adapt DiffPLF to the probabilistic time-series forecasting task.
Results demonstrate that we can attain a notable rise of 39.58% and 49.87% on MAE and CRPS respectively compared to the conventional method.
- Score: 21.784993854707288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the vast electric vehicle (EV) penetration to distribution grid,
charging load forecasting is essential to promote charging station operation
and demand-side management.However, the stochastic charging behaviors and
associated exogenous factors render future charging load patterns quite
volatile and hard to predict. Accordingly, we devise a novel Diffusion model
termed DiffPLF for Probabilistic Load Forecasting of EV charging, which can
explicitly approximate the predictive load distribution conditioned on
historical data and related covariates. Specifically, we leverage a denoising
diffusion model, which can progressively convert the Gaussian prior to real
time-series data by learning a reversal of the diffusion process. Besides, we
couple such diffusion model with a cross-attention-based conditioning mechanism
to execute conditional generation for possible charging demand profiles. We
also propose a task-informed fine-tuning technique to better adapt DiffPLF to
the probabilistic time-series forecasting task and acquire more accurate and
reliable predicted intervals. Finally, we conduct multiple experiments to
validate the superiority of DiffPLF to predict complex temporal patterns of
erratic charging load and carry out controllable generation based on certain
covariate. Results demonstrate that we can attain a notable rise of 39.58% and
49.87% on MAE and CRPS respectively compared to the conventional method.
Related papers
- Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
This paper studies the forecasting problem of multiple electric vehicle charging stations (EVCSs) in a hierarchical probabilistic manner.
For each charging station, a deep learning model based on a partial input convex neural network (PICNN) is trained to predict the day-ahead charging demand's conditional distribution.
Differentiable convex optimization layers (DCLs) are used to reconcile the scenarios sampled from the distributions to yield coherent scenarios.
arXiv Detail & Related papers (2024-11-01T03:35:04Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting [19.383395337330082]
We propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM.
The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters.
arXiv Detail & Related papers (2024-10-03T03:13:15Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
We propose TSDiff, an unconditionally-trained diffusion model for time series.
Our proposed self-guidance mechanism enables conditioning TSDiff for downstream tasks during inference, without requiring auxiliary networks or altering the training procedure.
We demonstrate the effectiveness of our method on three different time series tasks: forecasting, refinement, and synthetic data generation.
arXiv Detail & Related papers (2023-07-21T10:56:36Z) - DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal
Forecasting [18.86526240105348]
We propose an approach for efficiently training diffusion models for probabilistic forecasting.
We train a time-conditioned interpolator and a forecaster network that mimic the forward and reverse processes of standard diffusion models.
Our approach performs competitively on probabilistic forecasting of complex dynamics in sea surface temperatures, Navier-Stokes flows, and flows spring systems.
arXiv Detail & Related papers (2023-06-03T02:46:31Z) - Conditional Approximate Normalizing Flows for Joint Multi-Step
Probabilistic Electricity Demand Forecasting [32.907448044102864]
We introduce the conditional approximate normalizing flow (CANF) to make probabilistic multi-step time-series forecasts when correlations are present over long time horizons.
Empirical results show that conditional approximate normalizing flows outperform other methods in terms of multi-step forecast accuracy and lead to up to 10x better scheduling decisions.
arXiv Detail & Related papers (2022-01-08T03:42:12Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.