論文の概要: User-LLM: Efficient LLM Contextualization with User Embeddings
- arxiv url: http://arxiv.org/abs/2402.13598v1
- Date: Wed, 21 Feb 2024 08:03:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 16:33:24.021307
- Title: User-LLM: Efficient LLM Contextualization with User Embeddings
- Title(参考訳): User-LLM: ユーザ埋め込みによる効率的なLLMコンテキスト化
- Authors: Lin Ning, Luyang Liu, Jiaxing Wu, Neo Wu, Devora Berlowitz, Sushant
Prakash, Bradley Green, Shawn O'Banion, Jun Xie
- Abstract要約: 大規模言語モデル(LLM)のコンテキスト化にユーザ埋め込みを活用する新しいフレームワークであるUser-LLMを提案する。
MovieLens、Amazon Review、Google Local Reviewのデータセットに関する我々の実験は、様々なタスクで大きなパフォーマンス向上を示している。
- 参考スコア(独自算出の注目度): 24.099604517203606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have revolutionized natural language processing.
However, effectively incorporating complex and potentially noisy user
interaction data remains a challenge. To address this, we propose User-LLM, a
novel framework that leverages user embeddings to contextualize LLMs. These
embeddings, distilled from diverse user interactions using self-supervised
pretraining, capture latent user preferences and their evolution over time. We
integrate these user embeddings with LLMs through cross-attention and
soft-prompting, enabling LLMs to dynamically adapt to user context. Our
comprehensive experiments on MovieLens, Amazon Review, and Google Local Review
datasets demonstrate significant performance gains across various tasks.
Notably, our approach outperforms text-prompt-based contextualization on long
sequence tasks and tasks that require deep user understanding while being
computationally efficient. We further incorporate Perceiver layers to
streamline the integration between user encoders and LLMs, reducing
computational demands.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理に革命をもたらした。
しかし、複雑で潜在的に騒がしいユーザーインタラクションデータを効果的に組み込むことは課題である。
そこで我々は,LLMのコンテキスト化にユーザ埋め込みを活用する新しいフレームワークであるUser-LLMを提案する。
これらの埋め込みは、自己教師付き事前学習による多様なユーザーインタラクションから抽出され、潜在ユーザの好みとその時間的変化をキャプチャする。
これらのユーザ埋め込みを,ユーザコンテキストに動的に適応できるように,クロスアテンションとソフトプロンプトを通じてLLMと統合する。
movielens、amazon review、およびgoogle local reviewデータセットに関する包括的な実験は、さまざまなタスクで著しいパフォーマンス向上を示している。
特に,計算効率の面では,長いシーケンスタスクや深いユーザ理解を必要とするタスクにおいて,テキストプロンプトに基づくコンテキスト化よりも優れています。
さらに、Perceiverレイヤを組み込んで、ユーザエンコーダとLLMの統合を効率化し、計算要求を減らす。
関連論文リスト
- LIBER: Lifelong User Behavior Modeling Based on Large Language Models [42.045535303737694]
大規模言語モデルに基づく生涯ユーザ行動モデリング(LIBER)を提案する。
LIBERはHuaweiの音楽レコメンデーションサービスにデプロイされ、ユーザーの再生回数と再生時間の3.01%と7.69%を大幅に改善した。
論文 参考訳(メタデータ) (2024-11-22T03:43:41Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
調整可能な大きな言語モデル(LLM)をトレーニングします。
木構造における3K以上の多ターン会話を含む多ターン嗜好データセットを開発した。
評価のために、慎重に選択された100のサンプルと、会話中にカスタマイズされたアライメント性能を測定するために適切に設計されたメトリクスからなるALOEベンチマークを確立する。
論文 参考訳(メタデータ) (2024-10-04T17:48:29Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
逐次リコメンデータシステム(SRS)は,ユーザの過去のインタラクションシーケンスに基づいて,ユーザが好む次の項目を予測する。
様々なAIアプリケーションにおける大規模言語モデル(LLM)の台頭に触発されて、LLMベースのSRSの研究が急増している。
我々は,大きめの粒度適応の上に構築された逐次レコメンデーションモデルであるDARecを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:03:40Z) - Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models [66.24055500785657]
従来のターンベースのチャットシステムは、ユーザが応答を生成している間に、システムが言葉で対話することを防ぐ。
これらの制限を克服するため,既存のLCMをユーザを聴きながら出力を生成し,ユーザに対して即時フィードバックを提供する。
クエリとレスポンスの時間スライスを交互に行うデータセットを構築し、インスタントインタラクションにおける典型的なフィードバックタイプをカバーする。
論文 参考訳(メタデータ) (2024-06-22T03:20:10Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
本稿では、シーケンシャルレコメンデータシステム(SRS)のための優先構文解析(P2Rec)を用いた実践的LLM拡張パラダイムを提案する。
具体的には、情報再構成段階において、事前学習したSRSモデルの助けを借りて、協調的な情報注入のための新しいユーザレベルSFTタスクを設計する。
我々のゴールは、LLMが各ユーザのインタラクションシーケンスから対応する優先度分布を再構築することを学ばせることである。
論文 参考訳(メタデータ) (2024-06-01T07:18:56Z) - Breaking the Length Barrier: LLM-Enhanced CTR Prediction in Long Textual User Behaviors [25.086118164540974]
大型言語モデル(LLM)はクリックスルー率(CTR)予測の性能を向上させるために用いられる。
ユーザシーケンスが長くなるにつれて、LLMの現在の効率は数十億のユーザやアイテムのトレーニングに不十分である。
我々は,LLMに基づくCTRモデリングの効率を高めるために,行動集約階層(BAHE)を提案する。
論文 参考訳(メタデータ) (2024-03-28T12:05:15Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
我々は,協調情報をLLMにシームレスに組み込んでレコメンデーションを行う,革新的なLLMRec手法であるCoLLMを紹介する。
CoLLMは、外部の伝統的なモデルを通して協調情報をキャプチャし、LLMの入力トークン埋め込み空間にマッピングする。
大規模な実験により、CoLLMはLLMに協調情報を包括的に統合し、レコメンデーション性能が向上することが確認された。
論文 参考訳(メタデータ) (2023-10-30T12:25:00Z) - Do LLMs Understand User Preferences? Evaluating LLMs On User Rating
Prediction [15.793007223588672]
大規模言語モデル(LLM)は、ゼロショットまたは少数ショットの方法で新しいタスクに一般化する際、例外的な機能を示した。
我々は,2億5000万から540Bのパラメータを多種多様なサイズで検討し,その性能をゼロショット,少数ショット,微調整のシナリオで評価した。
論文 参考訳(メタデータ) (2023-05-10T21:43:42Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。