Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces
- URL: http://arxiv.org/abs/2402.13773v2
- Date: Sat, 13 Jul 2024 17:32:09 GMT
- Title: Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces
- Authors: Philipp Mackensen, Paul Staat, Stefan Roth, Aydin Sezgin, Christof Paar, Veelasha Moonsamy,
- Abstract summary: We propose a novel approach that allows for environment-adaptive spatial control of wireless jamming signals.
We demonstrate complete denial-of-service of a Wi-Fi device while a second device located at a distance as close as 5 mm remains unaffected.
- Score: 20.406776153173176
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wireless communication infrastructure is a cornerstone of modern digital society, yet it remains vulnerable to the persistent threat of wireless jamming. Attackers can easily create radio interference to overshadow legitimate signals, leading to denial of service. The broadcast nature of radio signal propagation makes such attacks possible in the first place, but at the same time poses a challenge for the attacker: The jamming signal does not only reach the victim device but also other neighboring devices, preventing precise attack targeting. In this work, we solve this challenge by leveraging the emerging RIS technology, for the first time, for precise delivery of jamming signals. In particular, we propose a novel approach that allows for environment-adaptive spatial control of wireless jamming signals, granting a new degree of freedom to perform jamming attacks. We explore this novel method with extensive experimentation and demonstrate that our approach can disable the wireless communication of one or multiple victim devices while leaving neighboring devices unaffected. Notably, our method extends to challenging scenarios where wireless devices are very close to each other: We demonstrate complete denial-of-service of a Wi-Fi device while a second device located at a distance as close as 5 mm remains unaffected, sustaining wireless communication at a data rate of 25 Mbit/s. Lastly, we conclude by proposing potential countermeasures to thwart RIS-based spatial domain wireless jamming attacks.
Related papers
- Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
Digital twins (DTs) embody real-time monitoring, predictive, and enhanced decision-making capabilities.
This study investigates the security challenges in distributed network DT systems, which potentially undermine the reliability of subsequent network applications.
arXiv Detail & Related papers (2024-07-02T03:32:09Z) - Security Analysis of WiFi-based Sensing Systems: Threats from Perturbation Attacks [18.25251260793266]
Deep learning technologies are inherently vulnerable to adversarial perturbation attacks.
In this paper, we elaborate such an attack, called WiIntruder, distinguishing itself with robustness, universality, and stealthiness.
Tests confirm the practical threats of perturbation attacks to common WiFi-based services, including user authentication and respiratory monitoring.
arXiv Detail & Related papers (2024-04-24T01:43:07Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication Systems [21.878711118514342]
Magmaw is a novel wireless attack methodology capable of generating universal adversarial perturbations for any multimodal signal transmitted over a wireless channel.
We show that Magmaw causes significant performance degradation even in the presence of strong defense mechanisms.
arXiv Detail & Related papers (2023-11-01T00:33:59Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
An end-to-end WiFi signal neural network (SNN) is proposed to enable WiFi-only sensing in both line-of-sight and non-line-of-sight scenarios.
Especially, the 3D convolution module is able to explore thetemporal continuity of WiFi signals, and the feature self-attention module can explicitly maintain dominant features.
arXiv Detail & Related papers (2022-06-20T16:03:45Z) - Hands-on Wireless Sensing with Wi-Fi: A Tutorial [7.8774878397748065]
This tutorial takes Wi-Fi sensing as an example.
It introduces both the theoretical principles and the code implementation of data collection, signal processing, features extraction, and model design.
arXiv Detail & Related papers (2022-06-20T01:53:35Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Towards an AI-Driven Universal Anti-Jamming Solution with Convolutional
Interference Cancellation Network [4.450750414447688]
Wireless links are increasingly used to deliver critical services, while intentional interference (jamming) remains a very serious threat to such services.
We propose an approach that relies on advances in Machine Learning, and the promises of neural accelerators and software defined radios.
We develop a two-antenna prototype system and evaluate our jamming cancellation approach in various environment settings and modulation schemes.
arXiv Detail & Related papers (2022-03-18T03:30:57Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal prorogation in wireless networks.
IRS is capable of dynamically altering wireless channels to enhance the communication performance.
Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks.
arXiv Detail & Related papers (2020-07-06T13:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.