BenchCloudVision: A Benchmark Analysis of Deep Learning Approaches for
Cloud Detection and Segmentation in Remote Sensing Imagery
- URL: http://arxiv.org/abs/2402.13918v3
- Date: Fri, 1 Mar 2024 13:39:07 GMT
- Title: BenchCloudVision: A Benchmark Analysis of Deep Learning Approaches for
Cloud Detection and Segmentation in Remote Sensing Imagery
- Authors: Loddo Fabio, Dario Piga, Michelucci Umberto, El Ghazouali Safouane
- Abstract summary: This paper examines seven cutting-edge semantic segmentation and detection algorithms applied to clouds identification.
To increase the model's adaptability, critical elements including the type of imagery and the amount of spectral bands used during training are analyzed.
Research tries to produce machine learning algorithms that can perform cloud segmentation using only a few spectral bands.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Satellites equipped with optical sensors capture high-resolution imagery,
providing valuable insights into various environmental phenomena. In recent
years, there has been a surge of research focused on addressing some challenges
in remote sensing, ranging from water detection in diverse landscapes to the
segmentation of mountainous and terrains. Ongoing investigations goals to
enhance the precision and efficiency of satellite imagery analysis. Especially,
there is a growing emphasis on developing methodologies for accurate water body
detection, snow and clouds, important for environmental monitoring, resource
management, and disaster response. Within this context, this paper focus on the
cloud segmentation from remote sensing imagery. Accurate remote sensing data
analysis can be challenging due to the presence of clouds in optical
sensor-based applications. The quality of resulting products such as
applications and research is directly impacted by cloud detection, which plays
a key role in the remote sensing data processing pipeline. This paper examines
seven cutting-edge semantic segmentation and detection algorithms applied to
clouds identification, conducting a benchmark analysis to evaluate their
architectural approaches and identify the most performing ones. To increase the
model's adaptability, critical elements including the type of imagery and the
amount of spectral bands used during training are analyzed. Additionally, this
research tries to produce machine learning algorithms that can perform cloud
segmentation using only a few spectral bands, including RGB and RGBN-IR
combinations. The model's flexibility for a variety of applications and user
scenarios is assessed by using imagery from Sentinel-2 and Landsat-8 as
datasets. This benchmark can be reproduced using the material from this github
link: https://github.com/toelt-llc/cloud_segmentation_comparative.
Related papers
- FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Detecting Cloud Presence in Satellite Images Using the RGB-based CLIP
Vision-Language Model [0.0]
This work explores capabilities of the pre-trained CLIP vision-language model to identify satellite images affected by clouds.
Several approaches to using the model to perform cloud presence detection are proposed and evaluated.
Results demonstrate that the representations learned by the CLIP model can be useful for satellite image processing tasks involving clouds.
arXiv Detail & Related papers (2023-08-01T13:36:46Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Analyzing General-Purpose Deep-Learning Detection and Segmentation
Models with Images from a Lidar as a Camera Sensor [0.06554326244334865]
This work explores the potential of general-purpose DL perception algorithms for processing image-like outputs of advanced lidar sensors.
Rather than processing the three-dimensional point cloud data, this is, to the best of our knowledge, the first work to focus on low-resolution images with 360text field of view.
We show that with adequate preprocessing, general-purpose DL models can process these images, opening the door to their usage in environmental conditions.
arXiv Detail & Related papers (2022-03-08T13:14:43Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
We design a series of forgery detection systems that each focus on one individual part of the face.
We use these detectors to perform detailed empirical analysis on the FaceForensics++, Celeb-DF, and Facebook Deepfake Detection Challenge datasets.
arXiv Detail & Related papers (2021-09-21T16:18:45Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - An Efficient Hypergraph Approach to Robust Point Cloud Resampling [57.49817398852218]
This work investigates point cloud resampling based on hypergraph signal processing (HGSP)
We design hypergraph spectral filters to capture multi-lateral interactions among the signal nodes of point clouds.
Our test results validate the high efficacy of hypergraph characterization of point clouds.
arXiv Detail & Related papers (2021-03-11T23:19:54Z) - Single Image Cloud Detection via Multi-Image Fusion [23.641624507709274]
A primary challenge in developing algorithms is the cost of collecting annotated training data.
We demonstrate how recent advances in multi-image fusion can be leveraged to bootstrap single image cloud detection.
We collect a large dataset of Sentinel-2 images along with a per-pixel semantic labelling for land cover.
arXiv Detail & Related papers (2020-07-29T22:52:28Z) - Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V
images for Cloud Detection [1.5828697880068703]
The number of Earth observation satellites carrying optical sensors with similar characteristics is constantly growing.
Differences in retrieved radiances lead to significant drops in accuracy, which hampers knowledge and information sharing across sensors.
We propose a domain adaptation to reduce the statistical differences between images of two satellite sensors in order to boost the performance of transfer learning models.
arXiv Detail & Related papers (2020-06-10T16:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.