An Efficient Hypergraph Approach to Robust Point Cloud Resampling
- URL: http://arxiv.org/abs/2103.06999v1
- Date: Thu, 11 Mar 2021 23:19:54 GMT
- Title: An Efficient Hypergraph Approach to Robust Point Cloud Resampling
- Authors: Qinwen Deng, Songyang Zhang and Zhi Ding
- Abstract summary: This work investigates point cloud resampling based on hypergraph signal processing (HGSP)
We design hypergraph spectral filters to capture multi-lateral interactions among the signal nodes of point clouds.
Our test results validate the high efficacy of hypergraph characterization of point clouds.
- Score: 57.49817398852218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient processing and feature extraction of largescale point clouds are
important in related computer vision and cyber-physical systems. This work
investigates point cloud resampling based on hypergraph signal processing
(HGSP) to better explore the underlying relationship among different cloud
points and to extract contour-enhanced features. Specifically, we design
hypergraph spectral filters to capture multi-lateral interactions among the
signal nodes of point clouds and to better preserve their surface outlines.
Without the need and the computation to first construct the underlying
hypergraph, our low complexity approach directly estimates hypergraph spectrum
of point clouds by leveraging hypergraph stationary processes from the observed
3D coordinates. Evaluating the proposed resampling methods with several
metrics, our test results validate the high efficacy of hypergraph
characterization of point clouds and demonstrate the robustness of
hypergraph-based resampling under noisy observations.
Related papers
- Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural encoders.
The learned point-cloud can be easily integrated into various downstream tasks, including not only high-level rendering tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image rendering.
arXiv Detail & Related papers (2022-12-31T08:58:39Z) - PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D Point
Cloud Upsampling [56.463507980857216]
We propose a generative adversarial network for point cloud upsampling.
It can make the upsampled points evenly distributed on the underlying surface but also efficiently generate clean high frequency regions.
arXiv Detail & Related papers (2022-03-02T07:47:46Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
We propose an efficient spectral hypergraph coarsening scheme (HyperSF) for preserving the original spectral (structural) properties of hypergraphs.
Our results show that the proposed hypergraph coarsening algorithm can significantly improve the multi-way conductance of hypergraph clustering.
arXiv Detail & Related papers (2021-08-17T22:20:23Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Graphite: GRAPH-Induced feaTure Extraction for Point Cloud Registration [80.69255347486693]
We introduce a GRAPH-Induced feaTure Extraction pipeline, a simple yet powerful feature and keypoint detector.
We construct a generic graph-based learning scheme to describe point cloud regions and extract salient points.
We Reformulate the 3D keypoint pipeline with graph neural networks which allow efficient processing of the point set.
arXiv Detail & Related papers (2020-10-18T19:41:09Z) - Learning Graph-Convolutional Representations for Point Cloud Denoising [31.557988478764997]
We propose a deep neural network that can deal with the permutation-invariance problem encountered by learning-based point cloud processing methods.
The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs.
It is especially robust both at high noise levels and in presence of structured noise such as the one encountered in real LiDAR scans.
arXiv Detail & Related papers (2020-07-06T08:11:28Z) - Hypergraph Spectral Analysis and Processing in 3D Point Cloud [80.25162983501308]
3D point clouds have become a fundamental data structure to characterize 3D objects and surroundings.
To process 3D point clouds efficiently, a suitable model for the underlying structure and outlier noises is always critical.
We propose a hypergraph-based new point cloud model that is amenable to efficient analysis and processing.
arXiv Detail & Related papers (2020-01-08T05:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.