論文の概要: SDXL-Lightning: Progressive Adversarial Diffusion Distillation
- arxiv url: http://arxiv.org/abs/2402.13929v3
- Date: Sat, 2 Mar 2024 09:09:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 19:46:00.713232
- Title: SDXL-Lightning: Progressive Adversarial Diffusion Distillation
- Title(参考訳): sdxl-lightning:プログレッシブ・アドバーサリー拡散蒸留
- Authors: Shanchuan Lin, Anran Wang, Xiao Yang
- Abstract要約: SDXLに基づく1ステップ/2ステップ1024pxのテキスト・トゥ・イメージ生成において,新しい最先端を実現する拡散蒸留法を提案する。
本手法は, 品質とモードカバレッジのバランスをとるために, 進行蒸留と逆蒸留を組み合わせたものである。
- 参考スコア(独自算出の注目度): 6.7599928040362975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a diffusion distillation method that achieves new state-of-the-art
in one-step/few-step 1024px text-to-image generation based on SDXL. Our method
combines progressive and adversarial distillation to achieve a balance between
quality and mode coverage. In this paper, we discuss the theoretical analysis,
discriminator design, model formulation, and training techniques. We
open-source our distilled SDXL-Lightning models both as LoRA and full UNet
weights.
- Abstract(参考訳): SDXLに基づく1ステップ/2ステップ1024pxのテキスト・トゥ・イメージ生成において新しい最先端を実現する拡散蒸留法を提案する。
本手法は, プログレッシブ蒸留と逆蒸留を組み合わせることで, 品質とモードカバレッジのバランスを図る。
本稿では, 理論的解析, 識別器設計, モデル定式化, 訓練技術について論じる。
蒸留したSDXL-LightningモデルをLoRAおよびフルUNet重みとしてオープンソース化した。
関連論文リスト
- DDIL: Improved Diffusion Distillation With Imitation Learning [57.3467234269487]
拡散モデルは生成モデリング(例:text-to-image)に優れるが、サンプリングには複数の遅延ネットワークパスが必要である。
プログレッシブ蒸留や一貫性蒸留は、パスの数を減らして将来性を示す。
DDILの一貫性は, プログレッシブ蒸留 (PD), 潜在整合モデル (LCM) および分散整合蒸留 (DMD2) のベースラインアルゴリズムにより向上することを示した。
論文 参考訳(メタデータ) (2024-10-15T18:21:47Z) - Relational Diffusion Distillation for Efficient Image Generation [27.127061578093674]
拡散モデルの高い遅延は、コンピューティングリソースの少ないエッジデバイスにおいて、その広範な応用を妨げる。
本研究では,拡散モデルの蒸留に適した新しい蒸留法である拡散蒸留(RDD)を提案する。
提案したRDDは, 最先端の蒸留蒸留法と比較すると1.47FID減少し, 256倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-10-10T07:40:51Z) - Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
蒸留不要1ステップ拡散モデルを提案する。
具体的には、敵対的訓練に参加するためのノイズ認識識別器(NAD)を提案する。
我々は、エッジ対応disTS(EA-DISTS)による知覚損失を改善し、詳細な情報を生成するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2024-10-05T16:41:36Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
複雑な多段階拡散モデルを1段階条件付きGAN学生モデルに蒸留する。
E-LatentLPIPSは,拡散モデルの潜在空間で直接動作する知覚的損失である。
我々は, 最先端の1ステップ拡散蒸留モデルよりも優れた1ステップ発生器を実証した。
論文 参考訳(メタデータ) (2024-05-09T17:59:40Z) - Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation [24.236841051249243]
蒸留法は、モデルをマルチショットからシングルステップ推論にシフトすることを目的としている。
ADDの限界を克服する新しい蒸留法であるLADD(Latent Adversarial Diffusion Distillation)を導入する。
ピクセルベースのADDとは対照的に、LADDは事前訓練された潜伏拡散モデルから生成的特徴を利用する。
論文 参考訳(メタデータ) (2024-03-18T17:51:43Z) - Adversarial Diffusion Distillation [18.87099764514747]
逆拡散蒸留(adversarial Diffusion Distillation、ADD)は、1-4ステップで大規模な基礎画像拡散モデルを効率的にサンプリングする新しい訓練手法である。
我々は,大規模なオフザシェルフ画像拡散モデルを教師信号として活用するために,スコア蒸留を用いる。
本モデルでは,既存の数ステップ法を1ステップで明らかに上回り,4ステップで最先端拡散モデル(SDXL)の性能に到達する。
論文 参考訳(メタデータ) (2023-11-28T18:53:24Z) - Aligning Logits Generatively for Principled Black-Box Knowledge Distillation [49.43567344782207]
Black-Box Knowledge Distillation (B2KD)は、クラウドからエッジへのモデル圧縮において、サーバ上にホストされる見えないデータとモデルによって定式化された問題である。
民営化と蒸留による2段階のワークフローを形式化する。
そこで本研究では,ブラックボックスの煩雑なモデルを軽量に蒸留するKD (MEKD) を新たに提案する。
論文 参考訳(メタデータ) (2022-05-21T02:38:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。