論文の概要: Verifying message-passing neural networks via topology-based bounds tightening
- arxiv url: http://arxiv.org/abs/2402.13937v2
- Date: Tue, 21 May 2024 17:10:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 18:31:52.012953
- Title: Verifying message-passing neural networks via topology-based bounds tightening
- Title(参考訳): トポロジに基づく境界締め付けによるメッセージパッシングニューラルネットワークの検証
- Authors: Christopher Hojny, Shiqiang Zhang, Juan S. Campos, Ruth Misener,
- Abstract要約: 我々は、メッセージパッシングニューラルネットワーク(MPNN)のための堅牢な証明書を提供するための、計算学的に効果的なアプローチを開発する。
私たちの研究は混合整数最適化に基づいており、様々なサブプロブレムをエンコードしています。
ノード分類とグラフ分類の両方の問題を検証し、エッジの追加と削除の両方を行うトポロジ的攻撃について検討する。
- 参考スコア(独自算出の注目度): 3.3267518043390205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since graph neural networks (GNNs) are often vulnerable to attack, we need to know when we can trust them. We develop a computationally effective approach towards providing robust certificates for message-passing neural networks (MPNNs) using a Rectified Linear Unit (ReLU) activation function. Because our work builds on mixed-integer optimization, it encodes a wide variety of subproblems, for example it admits (i) both adding and removing edges, (ii) both global and local budgets, and (iii) both topological perturbations and feature modifications. Our key technology, topology-based bounds tightening, uses graph structure to tighten bounds. We also experiment with aggressive bounds tightening to dynamically change the optimization constraints by tightening variable bounds. To demonstrate the effectiveness of these strategies, we implement an extension to the open-source branch-and-cut solver SCIP. We test on both node and graph classification problems and consider topological attacks that both add and remove edges.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は攻撃に対して脆弱であることが多いため、いつそれを信頼できるかを知る必要がある。
我々は、Rectified Linear Unit(ReLU)アクティベーション関数を用いて、メッセージパスニューラルネットワーク(MPNN)の堅牢な証明を提供するための、計算学的に効果的なアプローチを開発する。
私たちの研究は混合整数最適化に基づいているので、例えば、様々なサブプロブレムをエンコードします。
(i)エッジの追加と削除の両方。
(二)国際予算及び地方予算
(三)トポロジカルな摂動と特徴的変化
私たちの重要な技術であるトポロジベースのバウンダリ締め付けは、グラフ構造を使ってバウンダリを締め付けます。
また,変数境界の締め付けによる最適化制約を動的に変更するために,アグレッシブ境界の締め付け実験を行った。
これらの戦略の有効性を示すために,オープンソースブランチ・アンド・カット・ソルバSCIPの拡張を実装した。
ノード分類とグラフ分類の両方の問題を検証し、エッジの追加と削除の両方を行うトポロジ的攻撃について検討する。
関連論文リスト
- Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization [8.323690755070123]
本稿では,バイナリニューラルネットワーク(BNN)の特性検証手法について検討する。
フル精度のBNNと同様、入力の摂動にも敏感だ。
スパース多項式最適化から導かれる半有限プログラミング緩和を用いた代替手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T11:03:48Z) - Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience [50.460555688927826]
グラフニューラルネットワーク(GNN)の脆弱性に対処するグラフエージェントネットワーク(GAgN)を提案する。
GAgNはグラフ構造化エージェントネットワークであり、各ノードは1-hop-viewエージェントとして設計されている。
エージェントの限られたビューは、悪意のあるメッセージがGAgNでグローバルに伝播するのを防ぎ、グローバル最適化ベースのセカンダリアタックに抵抗する。
論文 参考訳(メタデータ) (2023-06-12T07:27:31Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
グラフエッジ上での協調ビームフォーミングを学習するためのエッジグラフニューラルネットワーク(Edge-GNN)を提案する。
提案したEdge-GNNは、最先端の手法よりも計算時間をはるかに短くして、より高い和率を達成する。
論文 参考訳(メタデータ) (2022-11-23T02:05:06Z) - Zonotope Domains for Lagrangian Neural Network Verification [102.13346781220383]
我々は、ディープニューラルネットワークを多くの2層ニューラルネットワークの検証に分解する。
我々の手法は線形プログラミングとラグランジアンに基づく検証技術の両方により改善された境界を与える。
論文 参考訳(メタデータ) (2022-10-14T19:31:39Z) - ASGNN: Graph Neural Networks with Adaptive Structure [41.83813812538167]
本稿では,アダプティブ構造(ASMP)を用いた新しい解釈可能なメッセージパッシング方式を提案する。
ASMPは、異なるレイヤにおけるメッセージパッシングプロセスが動的に調整されたグラフ上で実行可能であるという意味で適応的である。
論文 参考訳(メタデータ) (2022-10-03T15:10:40Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
グラフニューラルネットワーク(GNN)は、従来の畳み込みを非ユークリッドデータでの学習に拡張することで、目覚ましい成功を収めた。
本稿では,周辺情報を利用した新しいパラメトリックアクティベーション機能であるグラフ適応整流線形ユニット(GRELU)を提案する。
我々は,GNNのバックボーンと様々な下流タスクによって,プラグアンドプレイGRELU法が効率的かつ効果的であることを示す包括的実験を行った。
論文 参考訳(メタデータ) (2022-02-13T10:54:59Z) - Robust Graph Neural Networks via Probabilistic Lipschitz Constraints [7.359962178534361]
グラフニューラルネットワーク(GNN)は、最近、さまざまなネットワークベースのタスクでうまく機能することが実証されている。
GNNは入力のシフトや摂動の影響を受けやすく、ノード属性とグラフ構造の両方を含むことができる。
論文 参考訳(メタデータ) (2021-12-14T17:33:32Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNetは、さまざまな災害や攻撃に対する回復力のあるネットワークトポロジを発見するための強化学習フレームワークである。
ResiNetは複数のグラフに対してほぼ最適のレジリエンス向上を実現し,ユーティリティのバランスを保ちながら,既存のアプローチに比べて大きなマージンを持つことを示す。
論文 参考訳(メタデータ) (2021-10-18T06:14:28Z) - Neural Network Branch-and-Bound for Neural Network Verification [26.609606492971967]
本稿では,効率的な分岐戦略を設計するための新しい機械学習フレームワークを提案する。
グラフ入力として検証したいネットワークを直接扱う2つのグラフニューラルネットワーク(GNN)を学習する。
我々のGNNモデルは、より大きな未確認ネットワーク上での厳しい特性に対してよく一般化されていることを示す。
論文 参考訳(メタデータ) (2021-07-27T14:42:57Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
破滅的な忘れは、ニューラルネットワークが新しいタスクを学ぶ前に学んだ知識を「忘れる」傾向を指します。
本稿では,この問題を克服し,グラフニューラルネットワーク(GNN)における継続学習を強化するための新しいスキームを提案する。
私たちのアプローチの中心には、トポロジ認識重量保存(TWP)と呼ばれる汎用モジュールがあります。
論文 参考訳(メタデータ) (2020-12-10T22:30:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。