Probability Tools for Sequential Random Projection
- URL: http://arxiv.org/abs/2402.14026v3
- Date: Sun, 12 May 2024 05:59:46 GMT
- Title: Probability Tools for Sequential Random Projection
- Authors: Yingru Li,
- Abstract summary: We introduce the first probabilistic framework tailored for sequential random projection.
The analysis is complicated by the sequential dependence and high-dimensional nature of random variables.
By employing the method of mixtures within a self-normalized process, we achieve a desired non-asymptotic probability bound.
- Score: 1.6317061277457001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the first probabilistic framework tailored for sequential random projection, an approach rooted in the challenges of sequential decision-making under uncertainty. The analysis is complicated by the sequential dependence and high-dimensional nature of random variables, a byproduct of the adaptive mechanisms inherent in sequential decision processes. Our work features a novel construction of a stopped process, facilitating the analysis of a sequence of concentration events that are interconnected in a sequential manner. By employing the method of mixtures within a self-normalized process, derived from the stopped process, we achieve a desired non-asymptotic probability bound. This bound represents a non-trivial martingale extension of the Johnson-Lindenstrauss (JL) lemma, marking a pioneering contribution to the literature on random projection and sequential analysis.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Randomized algorithms and PAC bounds for inverse reinforcement learning in continuous spaces [47.907236421762626]
This work studies discrete-time discounted Markov decision processes with continuous state and action spaces.
We first consider the case in which we have access to the entire expert policy and characterize the set of solutions to the inverse problem.
arXiv Detail & Related papers (2024-05-24T12:53:07Z) - Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time [0.0]
In engineering, accurately modeling nonlinear dynamic systems from data contaminated by noise is both essential and complex.
The integration of continuous-time ordinary differential equations (ODEs) is crucial for aligning theoretical models with discretely sampled data.
This paper demonstrates the application of a probabilistic numerical method for solving ODEs in the joint parameter-state identification of nonlinear dynamic systems.
arXiv Detail & Related papers (2024-04-19T14:52:14Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Entropic Matching for Expectation Propagation of Markov Jump Processes [38.60042579423602]
We propose a new tractable inference scheme based on an entropic matching framework.
We demonstrate the effectiveness of our method by providing closed-form results for a simple family of approximate distributions.
We derive expressions for point estimation of the underlying parameters using an approximate expectation procedure.
arXiv Detail & Related papers (2023-09-27T12:07:21Z) - Bayesian sequential design of computer experiments for quantile set inversion [0.0]
We consider an unknown multivariate function representing a system-such as a complex numerical simulator.
Our objective is to estimate the set of deterministic inputs leading to outputs whose probability is less than a given threshold.
arXiv Detail & Related papers (2022-11-02T10:14:05Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
We study the classical problem of recovering a multidimensional source process from observations of mixtures of this process.
We show that this recovery is possible for many popular models of processes (up to order and monotone scaling of their coordinates) if the mixture is given by a sufficiently differentiable, invertible function.
arXiv Detail & Related papers (2021-02-04T20:28:44Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
We propose a methodology for analyzing POMCP policies by inspecting their traces.
The proposed method explores local properties of policy behavior to identify unexpected decisions.
We evaluate our approach on Tiger, a standard benchmark for POMDPs, and a real-world problem related to mobile robot navigation.
arXiv Detail & Related papers (2020-12-23T15:09:28Z) - On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint
Sampling Method [18.541857410928387]
The randomized diffusion method, proposed by [SL19], has emerged as an optimal discretization procedure for simulating the continuous time Langevin Langevin.
arXiv Detail & Related papers (2020-11-06T03:39:23Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.