論文の概要: LLM-Assisted Content Conditional Debiasing for Fair Text Embedding
- arxiv url: http://arxiv.org/abs/2402.14208v3
- Date: Mon, 24 Jun 2024 04:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 01:51:30.683362
- Title: LLM-Assisted Content Conditional Debiasing for Fair Text Embedding
- Title(参考訳): 公正なテキスト埋め込みのためのLCM支援コンテンツ条件劣化
- Authors: Wenlong Deng, Blair Chen, Beidi Zhao, Chiyu Zhang, Xiaoxiao Li, Christos Thrampoulidis,
- Abstract要約: 本稿では,公正なテキスト埋め込みを学習するための新しい手法を提案する。
テキスト埋め込みのための新しい内容条件等距離(CCED)フェアネスを定義する。
また,異なる感度属性を持つテキストの埋め込みが,対応する中性テキストの埋め込みから同じ距離を保っていることを保証するために,コンテンツ条件脱バイアス(CCD)の損失も導入する。
- 参考スコア(独自算出の注目度): 37.92120550031469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating biases in machine learning models has become an increasing concern in Natural Language Processing (NLP), particularly in developing fair text embeddings, which are crucial yet challenging for real-world applications like search engines. In response, this paper proposes a novel method for learning fair text embeddings. First, we define a novel content-conditional equal distance (CCED) fairness for text embeddings, ensuring content-conditional independence between sensitive attributes and text embeddings. Building on CCED, we introduce a content-conditional debiasing (CCD) loss to ensure that embeddings of texts with different sensitive attributes but identical content maintain the same distance from the embedding of their corresponding neutral text. Additionally, we tackle the issue of insufficient training data by using Large Language Models (LLMs) with instructions to fairly augment texts into different sensitive groups. Our extensive evaluations show that our approach effectively enhances fairness while maintaining the utility of embeddings. Furthermore, our augmented dataset, combined with the CCED metric, serves as an new benchmark for evaluating fairness.
- Abstract(参考訳): 機械学習モデルにおけるバイアスの緩和は、自然言語処理(NLP)において、特に公正なテキスト埋め込みの開発において懸念が高まっている。
そこで本研究では,公正なテキスト埋め込みを学習するための新しい手法を提案する。
まず,テキスト埋め込みにおけるコンテンツ条件等距離(CCED)フェアネスを定義し,センシティブ属性とテキスト埋め込みの間のコンテンツ条件独立性を保証する。
CCED上に構築したCCD(Content- Conditional Debiasing)損失は,異なる機密属性を持つテキストの埋め込みが,対応する中性テキストの埋め込みから同じ距離を保っていることを保証する。
さらに,Large Language Models (LLMs) を用いてテキストを多種多様なセンシティブなグループに拡張する手法により,不十分なトレーニングデータに対処する。
提案手法は, 組込み性を維持しつつ, 公平性を効果的に向上することを示す。
さらに、我々の拡張データセットはCCEDメトリックと組み合わせて、公正性を評価するための新しいベンチマークとして役立ちます。
関連論文リスト
- Semantic Token Reweighting for Interpretable and Controllable Text Embeddings in CLIP [46.53595526049201]
CLIPのようなVision-Language Models (VLM)内のテキストエンコーダは、画像と共有する埋め込み空間へのテキスト入力の変換において重要な役割を果たす。
解釈可能なテキスト埋め込み(SToRI)を構築するためのセマンティックトークン再重み付けフレームワークを提案する。
SToRIは文脈的重要性に基づいて意味的要素を差分重み付けすることでCLIPのテキスト符号化プロセスを洗練する。
論文 参考訳(メタデータ) (2024-10-11T02:42:13Z) - Analysing Zero-Shot Readability-Controlled Sentence Simplification [54.09069745799918]
本研究では,異なる種類の文脈情報が,所望の可読性を持つ文を生成するモデルの能力に与える影響について検討する。
結果から,全ての試験されたモデルは,原文の制限や特徴のため,文の簡略化に苦慮していることがわかった。
実験では、RCTSに合わせたより良い自動評価指標の必要性も強調した。
論文 参考訳(メタデータ) (2024-09-30T12:36:25Z) - An efficient text augmentation approach for contextualized Mandarin speech recognition [4.600045052545344]
本研究は、テキストのみのデータセットを活用し、事前学習されたASRモデルを文脈化することを提案する。
事前学習したCIFベースのASRを文脈化するために,限られた音声テキストデータを用いたコードブックを構築した。
多様なマンダリンテストセットに対する実験により,我々のTAアプローチは認識性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-06-14T11:53:14Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
合成データと1k以下のトレーニングステップのみを用いて,高品質なテキスト埋め込みを実現するための,新しい簡易な手法を提案する。
我々は、93言語にまたがる数十万のテキスト埋め込みタスクのための多様な合成データを生成するために、プロプライエタリなLLMを活用している。
実験により,ラベル付きデータを使わずに,高度に競争力のあるテキスト埋め込みベンチマークにおいて高い性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-31T02:13:18Z) - Constructing Vec-tionaries to Extract Message Features from Texts: A
Case Study of Moral Appeals [5.336592570916432]
本稿では,単語埋め込みによる検証辞書を向上するベクタリー測度ツールの構築手法を提案する。
vec-tionaryは、テキストの強みを超えてメッセージ機能のあいまいさを捉えるために、追加のメトリクスを生成することができる。
論文 参考訳(メタデータ) (2023-12-10T20:37:29Z) - Demonstrations Are All You Need: Advancing Offensive Content Paraphrasing using In-Context Learning [10.897468059705238]
監督されたパラフレーズは、意味と意図を維持するために大量のラベル付きデータに大きく依存している。
本稿では,大規模言語モデル(LLM)を用いたICL(In-Context Learning)を探索し,実践者を支援することを目的とする。
本研究は, 実演数と順序, 即時指導の排除, 測定毒性の低下など, 重要な要因に焦点を当てた。
論文 参考訳(メタデータ) (2023-10-16T16:18:55Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
対照的な学習を通してテキスト分類のための等化オッズとして知られる公平性の概念を満たす学習公正表現について研究する。
具体的には、まず、公正性制約のある学習表現と条件付き教師付きコントラスト目的との間の関係を理論的に分析する。
論文 参考訳(メタデータ) (2022-05-23T17:38:30Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
自然言語の独特な性質は、テキスト表現の分離をより困難にする。
情報理論にインスパイアされた本研究では,テキストの不整合表現を効果的に表現する手法を提案する。
条件付きテキスト生成とテキストスタイル転送の両方の実験は、不整合表現の質を実証する。
論文 参考訳(メタデータ) (2020-06-01T03:36:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。