GenSERP: Large Language Models for Whole Page Presentation
- URL: http://arxiv.org/abs/2402.14301v2
- Date: Wed, 17 Apr 2024 00:55:09 GMT
- Title: GenSERP: Large Language Models for Whole Page Presentation
- Authors: Zhenning Zhang, Yunan Zhang, Suyu Ge, Guangwei Weng, Mridu Narang, Xia Song, Saurabh Tiwary,
- Abstract summary: GenSERP is a framework that leverages large language models with vision in a few-shot setting to dynamically organize intermediate search results.
Our approach has three main stages: information gathering, answer generation, and scoring phase.
- Score: 22.354349023665538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of large language models (LLMs) brings an opportunity to minimize the effort in search engine result page (SERP) organization. In this paper, we propose GenSERP, a framework that leverages LLMs with vision in a few-shot setting to dynamically organize intermediate search results, including generated chat answers, website snippets, multimedia data, knowledge panels into a coherent SERP layout based on a user's query. Our approach has three main stages: (1) An information gathering phase where the LLM continuously orchestrates API tools to retrieve different types of items, and proposes candidate layouts based on the retrieved items, until it's confident enough to generate the final result. (2) An answer generation phase where the LLM populates the layouts with the retrieved content. In this phase, the LLM adaptively optimize the ranking of items and UX configurations of the SERP. Consequently, it assigns a location on the page to each item, along with the UX display details. (3) A scoring phase where an LLM with vision scores all the generated SERPs based on how likely it can satisfy the user. It then send the one with highest score to rendering. GenSERP features two generation paradigms. First, coarse-to-fine, which allow it to approach optimal layout in a more manageable way, (2) beam search, which give it a better chance to hit the optimal solution compared to greedy decoding. Offline experimental results on real-world data demonstrate how LLMs can contextually organize heterogeneous search results on-the-fly and provide a promising user experience.
Related papers
- MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs)
We first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks.
We propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers.
arXiv Detail & Related papers (2024-11-04T20:06:34Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Integrating Planning into Single-Turn Long-Form Text Generation [66.08871753377055]
We propose to use planning to generate long form content.
Our main novelty lies in a single auxiliary task that does not require multiple rounds of prompting or planning.
Our experiments demonstrate on two datasets from different domains, that LLMs fine-tuned with the auxiliary task generate higher quality documents.
arXiv Detail & Related papers (2024-10-08T17:02:40Z) - Manipulating Large Language Models to Increase Product Visibility [27.494854085799076]
Large language models (LLMs) are increasingly being integrated into search engines to provide natural language responses tailored to user queries.
We investigate whether recommendations from LLMs can be manipulated to enhance a product's visibility.
arXiv Detail & Related papers (2024-04-11T17:57:32Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
We show how to optimize Large Language Models (LLMs) inference for analytical workloads that invoke LLMs within relational queries.
We implement these optimizations in Apache Spark, with vLLM as the model serving backend.
We achieve up to 4.4x improvement in end-to-end latency on a benchmark of diverse LLM-based queries on real datasets.
arXiv Detail & Related papers (2024-03-09T07:01:44Z) - Harnessing Multi-Role Capabilities of Large Language Models for
Open-Domain Question Answering [40.2758450304531]
Open-domain question answering (ODQA) has emerged as a pivotal research spotlight in information systems.
We propose a framework that formulates the ODQA process into three basic steps: query expansion, document selection, and answer generation.
We introduce a novel prompt optimization algorithm to refine role-playing prompts and steer LLMs to produce higher-quality evidence and answers.
arXiv Detail & Related papers (2024-03-08T11:09:13Z) - Query-OPT: Optimizing Inference of Large Language Models via Multi-Query Instructions in Meeting Summarization [7.674972936853123]
We investigate whether combining the queries for the same input context in a single prompt to minimize repeated calls can be successfully used in meeting summarization.
We observe that 100% reliability in generating the response in the expected format is usually limited to certain closed-source LLMs.
arXiv Detail & Related papers (2024-02-29T19:00:47Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Investigating Table-to-Text Generation Capabilities of LLMs in
Real-World Information Seeking Scenarios [32.84523661055774]
Tabular data is prevalent across various industries, necessitating significant time and effort for users to understand and manipulate for their information-seeking purposes.
The adoption of large language models (LLMs) in real-world applications for table information seeking remains underexplored.
This paper investigates the table-to-text capabilities of different LLMs using four datasets within two real-world information seeking scenarios.
arXiv Detail & Related papers (2023-05-24T10:22:30Z) - Large Language Models are Zero-Shot Rankers for Recommender Systems [76.02500186203929]
This work aims to investigate the capacity of large language models (LLMs) to act as the ranking model for recommender systems.
We show that LLMs have promising zero-shot ranking abilities but struggle to perceive the order of historical interactions.
We demonstrate that these issues can be alleviated using specially designed prompting and bootstrapping strategies.
arXiv Detail & Related papers (2023-05-15T17:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.