Query-Efficient Planning with Language Models
- URL: http://arxiv.org/abs/2412.06162v1
- Date: Mon, 09 Dec 2024 02:51:21 GMT
- Title: Query-Efficient Planning with Language Models
- Authors: Gonzalo Gonzalez-Pumariega, Wayne Chen, Kushal Kedia, Sanjiban Choudhury,
- Abstract summary: Planning in complex environments requires an agent to efficiently query a world model to find a sequence of actions from start to goal.
Recent work has shown that Large Language Models (LLMs) can potentially help with planning by searching over promising states and adapting to feedback from the world.
We show that while both approaches improve upon comparable baselines, using an LLM as a generative planner results in significantly fewer interactions.
- Score: 8.136901056728945
- License:
- Abstract: Planning in complex environments requires an agent to efficiently query a world model to find a feasible sequence of actions from start to goal. Recent work has shown that Large Language Models (LLMs), with their rich prior knowledge and reasoning capabilities, can potentially help with planning by searching over promising states and adapting to feedback from the world. In this paper, we propose and study two fundamentally competing frameworks that leverage LLMs for query-efficient planning. The first uses LLMs as a heuristic within a search-based planner to select promising nodes to expand and propose promising actions. The second uses LLMs as a generative planner to propose an entire sequence of actions from start to goal, query a world model, and adapt based on feedback. We show that while both approaches improve upon comparable baselines, using an LLM as a generative planner results in significantly fewer interactions. Our key finding is that the LLM as a planner can more rapidly adapt its planning strategies based on immediate feedback than LLM as a heuristic. We present evaluations and ablations on Robotouille and PDDL planning benchmarks and discuss connections to existing theory on query-efficient planning algorithms. Code is available at https://github.com/portal-cornell/llms-for-planning
Related papers
- Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.
It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.
Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Understanding the planning of LLM agents: A survey [98.82513390811148]
This survey provides the first systematic view of LLM-based agents planning, covering recent works aiming to improve planning ability.
Comprehensive analyses are conducted for each direction, and further challenges in the field of research are discussed.
arXiv Detail & Related papers (2024-02-05T04:25:24Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
Large language models (LLMs) often struggle with tasks that require multi-step reasoning or goal-directed planning.
We propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of specialized modules.
We find that MAP yields significant improvements over both standard LLM methods.
arXiv Detail & Related papers (2023-09-30T00:10:14Z) - SayCanPay: Heuristic Planning with Large Language Models using Learnable
Domain Knowledge [14.024233628092167]
Large Language Models (LLMs) have demonstrated impressive planning abilities due to their vast "world knowledge"
Yet, obtaining plans that are both feasible (grounded in affordances) and cost-effective (in plan length) remains a challenge, despite recent progress.
This contrasts with planning methods that employ domain knowledge (formalized in action models such as PDDL) and search to generate feasible, optimal plans.
arXiv Detail & Related papers (2023-08-24T09:47:28Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.