Subobject-level Image Tokenization
- URL: http://arxiv.org/abs/2402.14327v2
- Date: Tue, 23 Apr 2024 13:41:47 GMT
- Title: Subobject-level Image Tokenization
- Authors: Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung,
- Abstract summary: Transformer-based vision models typically tokenize images into fixed-size square patches as input units.
Inspired by the subword tokenization widely adopted in language models, we propose an image tokenizer at a subobject level.
- Score: 60.80949852899857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based vision models typically tokenize images into fixed-size square patches as input units, which lacks the adaptability to image content and overlooks the inherent pixel grouping structure. Inspired by the subword tokenization widely adopted in language models, we propose an image tokenizer at a subobject level, where the subobjects are represented by semantically meaningful image segments obtained by segmentation models (e.g., segment anything models). To implement a learning system based on subobject tokenization, we first introduced a Direct Segment Anything Model (DirectSAM) that efficiently produces comprehensive segmentation of subobjects, then embed subobjects into compact latent vectors and fed them into a large language model for vision language learning. Empirical results demonstrated that our subobject-level tokenization significantly facilitates efficient learning of translating images into object and attribute descriptions compared to the traditional patch-level tokenization. Codes and models are open-sourced at https://github.com/ChenDelong1999/subobjects.
Related papers
- Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels [53.8817160001038]
We propose a novel method, PixelCLIP, to adapt the CLIP image encoder for pixel-level understanding.
To address the challenges of leveraging masks without semantic labels, we devise an online clustering algorithm.
PixelCLIP shows significant performance improvements over CLIP and competitive results compared to caption-supervised methods.
arXiv Detail & Related papers (2024-09-30T01:13:03Z) - FUSE-ing Language Models: Zero-Shot Adapter Discovery for Prompt Optimization Across Tokenizers [55.2480439325792]
We propose FUSE, an approach to approximating an adapter layer that maps from one model's textual embedding space to another, even across different tokenizers.
We show the efficacy of our approach via multi-objective optimization over vision-language and causal language models for image captioning and sentiment-based image captioning.
arXiv Detail & Related papers (2024-08-09T02:16:37Z) - Exploring Simple Open-Vocabulary Semantic Segmentation [7.245983878396646]
Open-vocabulary semantic segmentation models aim to accurately assign a semantic label to each pixel in an image from a set of arbitrary open-vocabulary texts.
In this paper, we introduce S-Seg, a novel model that can achieve surprisingly strong performance without depending on any of the above elements.
arXiv Detail & Related papers (2024-01-22T18:59:29Z) - Grounding Everything: Emerging Localization Properties in
Vision-Language Transformers [51.260510447308306]
We show that pretrained vision-language (VL) models allow for zero-shot open-vocabulary object localization without any fine-tuning.
We propose a Grounding Everything Module (GEM) that generalizes the idea of value-value attention introduced by CLIPSurgery to a self-self attention path.
We evaluate the proposed GEM framework on various benchmark tasks and datasets for semantic segmentation.
arXiv Detail & Related papers (2023-12-01T19:06:12Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
We show how vision-language models are able to understand where objects reside within an image and group together visually related parts of the imagery.
We propose a minimal set of modifications that results in models that uniquely learn both semantic and spatial information.
arXiv Detail & Related papers (2022-10-18T17:01:35Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.