論文の概要: WindDragon: Enhancing wind power forecasting with Automated Deep
Learning
- arxiv url: http://arxiv.org/abs/2402.14385v1
- Date: Thu, 22 Feb 2024 08:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 15:53:33.600974
- Title: WindDragon: Enhancing wind power forecasting with Automated Deep
Learning
- Title(参考訳): winddragon: 自動ディープラーニングによる風力予測の強化
- Authors: Julie Keisler (EDF R\&D OSIRIS, EDF R\&D), Etienne Le Naour (ISIR)
- Abstract要約: 本稿では,国家レベルでの短期(1~6時間地平線)風力予測への革新的アプローチを提案する。
この手法は,風速マップと数値気象予測を組み合わせた自動ディープラーニングを利用して,風力の正確な予測を行う。
- 参考スコア(独自算出の注目度): 0.5755004576310334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving net zero carbon emissions by 2050 requires the integration of
increasing amounts of wind power into power grids. This energy source poses a
challenge to system operators due to its variability and uncertainty.
Therefore, accurate forecasting of wind power is critical for grid operation
and system balancing. This paper presents an innovative approach to short-term
(1 to 6 hour horizon) windpower forecasting at a national level. The method
leverages Automated Deep Learning combined with Numerical Weather Predictions
wind speed maps to accurately forecast wind power.
- Abstract(参考訳): 2050年までに純ゼロ炭素排出量を達成するには、電力網への風力発電量の増大が必要である。
このエネルギー源はその変動性と不確実性のためにシステムオペレーターに挑戦する。
そのため,グリッド運転やシステムバランスには,風力の正確な予測が不可欠である。
本稿では,国家レベルでの短期(1時間から6時間)の風力発電予測に対する革新的なアプローチを提案する。
この手法は,風速マップと数値気象予測を組み合わせた自動ディープラーニングを利用して,風力の正確な予測を行う。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
風力発電は、再生可能、汚染のないその他の利点により、世界中の注目を集めている。
正確な風力発電予測(WPF)は、電力系統の運用における電力変動を効果的に低減することができる。
既存の手法は主に短期的な予測のために設計されており、効果的な時空間的特徴増強が欠如している。
論文 参考訳(メタデータ) (2023-05-30T04:03:15Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
人工知能(AI)に基づく高度データ駆動型中距離気象予報システムFengWuについて紹介する。
FengWuは大気力学を正確に再現し、0.25度緯度で37の垂直レベルで将来の陸と大気の状態を予測することができる。
その結果、FengWuは予測能力を大幅に向上させ、熟練した中距離気象予報を10.75日間のリードまで拡張できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T09:16:39Z) - A novel automatic wind power prediction framework based on multi-time
scale and temporal attention mechanisms [6.120692237856329]
風力発電は、ボラティリティ、断続性、ランダム性によって特徴づけられる。
従来の風力発電予測システムは、主に超短期または短期的な予測に焦点を当てている。
マルチタイムスケールで風力を予測できる自動フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-02T17:03:08Z) - SDWPF: A Dataset for Spatial Dynamic Wind Power Forecasting Challenge at
KDD Cup 2022 [42.72560292756442]
本稿では,一意な空間風力予測データセットであるSDWPFを提案する。
このデータセットは風力タービンの空間分布と動的文脈因子を含む。
このデータセットを使用して、Baidu KDD Cup 2022をローンチし、現在のWPFソリューションの限界を調べます。
論文 参考訳(メタデータ) (2022-08-08T18:38:45Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
風力タービンの健全性解析のための2つの新しい手法を提案する。
第1の方法は、比較的高低電力生産の減少または増加を評価することを目的とする。
第2の方法は抽出された概念の全体的ドリフトを評価する。
論文 参考訳(メタデータ) (2021-12-09T14:04:55Z) - Deep Spatio-Temporal Wind Power Forecasting [4.219722822139438]
エンコーダ・デコーダ構造に基づく深層学習手法を開発した。
本モデルでは,風力タービンが発生した風力を,他のタービンと比較して空間的位置と過去の風速データを用いて予測する。
論文 参考訳(メタデータ) (2021-09-29T16:26:10Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
最適化された機械学習アルゴリズムを用いることで、観測結果に隠れたパターンを見つけ、意味のあるデータを得ることができる。
電力曲線を用いた風力予測におけるパラメトリックモデルと非パラメトリックモデルの利用について検討した。
論文 参考訳(メタデータ) (2021-08-22T17:46:36Z) - Spatio-temporal estimation of wind speed and wind power using machine
learning: predictions, uncertainty and technical potential [0.0]
ここで提示される風力推定は、風力発電量の増加を伴うエネルギーシステムの設計を支援するためのプランナーにとって重要な入力である。
この手法は、スイスのハブ高さ100メートルのタービンに対して250ドル(約2,400円)のグリッド上の時間風力ポテンシャルの研究に応用される。
論文 参考訳(メタデータ) (2021-07-29T09:52:36Z) - Performance Comparison of Different Machine Learning Algorithms on the
Prediction of Wind Turbine Power Generation [0.0]
風力の浸透は電力システムの配給および計画の難しさそして複雑さを高めました。
電力のバランスをとるためには,高精度な風力予測を行う必要がある。
論文 参考訳(メタデータ) (2021-05-11T17:02:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。