Reimagining Anomalies: What If Anomalies Were Normal?
- URL: http://arxiv.org/abs/2402.14469v1
- Date: Thu, 22 Feb 2024 11:56:44 GMT
- Title: Reimagining Anomalies: What If Anomalies Were Normal?
- Authors: Philipp Liznerski, Saurabh Varshneya, Ece Calikus, Sophie Fellenz, and
Marius Kloft
- Abstract summary: We introduce a novel explanation method that generates multiple counterfactual examples for each anomaly.
A counterfactual example is a modification of the anomaly that is perceived as normal by the anomaly detector.
The method provides a high-level semantic explanation of the mechanism that triggered the anomaly detector, allowing users to explore "what-if scenarios"
- Score: 21.480869966442143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based methods have achieved a breakthrough in image anomaly
detection, but their complexity introduces a considerable challenge to
understanding why an instance is predicted to be anomalous. We introduce a
novel explanation method that generates multiple counterfactual examples for
each anomaly, capturing diverse concepts of anomalousness. A counterfactual
example is a modification of the anomaly that is perceived as normal by the
anomaly detector. The method provides a high-level semantic explanation of the
mechanism that triggered the anomaly detector, allowing users to explore
"what-if scenarios." Qualitative and quantitative analyses across various image
datasets show that the method applied to state-of-the-art anomaly detectors can
achieve high-quality semantic explanations of detectors.
Related papers
- Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
This case study explores the robustness of an anomaly detection system based on variational autoencoder generative models.
The goal is to get a different perspective on the real performances of anomaly detectors that use reconstruction differences.
arXiv Detail & Related papers (2024-07-29T12:39:07Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Why Are You Weird? Infusing Interpretability in Isolation Forest for
Anomaly Detection [3.498371632913735]
Anomaly detection is concerned with identifying examples in a dataset that do not conform to the expected behaviour.
This paper develops a method to explain the anomaly predictions of the state-of-the-art Isolation Forest anomaly detection algorithm.
arXiv Detail & Related papers (2021-12-13T18:16:18Z) - Variation and generality in encoding of syntactic anomaly information in
sentence embeddings [7.132368785057315]
We explore fine-grained differences in anomaly encoding by designing probing tasks that vary the hierarchical level at which anomalies occur in a sentence.
We test not only models' ability to detect a given anomaly, but also the generality of the detected anomaly signal.
Results suggest that all models encode some information supporting anomaly detection, but detection performance varies between anomalies.
arXiv Detail & Related papers (2021-11-12T10:23:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Anomaly detection using principles of human perception [0.0]
Unsupervised anomaly detection algorithm is developed that is simple, real-time and parameter-free.
The idea is to assume anomalies are observations that are unexpected to occur with respect to certain groupings made by the majority of the data.
arXiv Detail & Related papers (2021-03-23T05:46:27Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.