論文の概要: Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap
for Prompt-Based Large Language Models and Beyond
- arxiv url: http://arxiv.org/abs/2402.14522v1
- Date: Thu, 22 Feb 2024 13:13:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 15:15:29.862511
- Title: Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap
for Prompt-Based Large Language Models and Beyond
- Title(参考訳): 複数のモデルにまたがる統一タスク埋め込みに向けて: Promptベースの大規模言語モデルのギャップを埋める
- Authors: Xinyu Wang, Hainiu Xu, Lin Gui, Yulan He
- Abstract要約: 既存のタスク埋め込みメソッドは、微調整されたタスク固有の言語モデルに依存している。
本稿では,様々なモデルからタスク埋め込みを調和させる統合タスク埋め込み(FUTE)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 18.476364176960868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Task embedding, a meta-learning technique that captures task-specific
information, has become prevalent, especially in areas such as multi-task
learning, model editing, and interpretability. However, it faces challenges
with the emergence of prompt-guided Large Language Models (LLMs) operating in a
gradientfree manner. Existing task embedding methods rely on fine-tuned,
task-specific language models, which hinders the adaptability of task
embeddings across diverse models, especially prompt-based LLMs. To unleash the
power of task embedding in the era of LLMs, we propose a framework for unified
task embeddings (FUTE), harmonizing task embeddings from various models,
including smaller language models and LLMs with varied prompts, within a single
vector space. Such uniformity enables the comparison and analysis of
similarities amongst different models, extending the scope and utility of
existing task embedding methods in addressing multi-model scenarios, whilst
maintaining their performance to be comparable to architecture-specific
methods.
- Abstract(参考訳): タスク固有の情報をキャプチャするメタ学習技術であるタスク埋め込みは、特にマルチタスク学習、モデル編集、解釈可能性などの分野で普及している。
しかし、プロンプト誘導型大規模言語モデル(LLM)がグラデーションフリーで動作し、課題に直面している。
既存のタスク埋め込み手法は、細調整されたタスク固有の言語モデルに依存しており、様々なモデル、特にプロンプトベースのLLMに対するタスク埋め込みの適応性を妨げている。
LLMの時代にタスク埋め込みのパワーを解放するために,より小さな言語モデルや様々なプロンプトを持つLLMを含む様々なモデルから,単一のベクトル空間内でタスク埋め込みを調和させる統合タスク埋め込み(FUTE)フレームワークを提案する。
このような統一性は、異なるモデル間の類似性の比較と分析を可能にし、アーキテクチャ固有のメソッドに匹敵する性能を維持しながら、マルチモデルのシナリオに対処する既存のタスク埋め込みメソッドの範囲と有用性を拡張する。
関連論文リスト
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
タスクの多種多様な配列で訓練済みの大規模言語モデル(LLM)を微調整することが、モデル構築の一般的なアプローチとなっている。
本研究では,事前学習したLLMに符号化されたタスク固有情報と,その表現に対する指導指導の効果について検討する。
論文 参考訳(メタデータ) (2024-10-25T23:38:28Z) - UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model [11.885204227946549]
統一表現を用いて様々なタスクを表現するために設計された包括的モデルを提案する。
本モデルは,ユーザ指示の暗黙的な意図を理解する上で,強力な能力を示す。
私たちのアプローチは、例外的なスケーラビリティと汎用性を示します。
論文 参考訳(メタデータ) (2024-08-05T14:27:39Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
textbfGPTスケールモデルをマージするための textbfModel textbfExclusive textbfTask textbfArithmetic を提案する。
提案するMetaGPTは,データに依存しず,検索処理を回避し,低コストで実装が容易なメタGPTである。
論文 参考訳(メタデータ) (2024-06-17T10:12:45Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
一般的な事前訓練された大規模モデルから微調整されたマージングモデルは、様々なタスクに特化しているが、様々なタスクでうまく機能するマルチタスクモデルを構築するための安価でスケーラブルな戦略として実証されている。
本稿では、共通低次元部分空間を同定し、その共有情報トラック干渉問題を性能を犠牲にすることなく利用するための連続緩和(Concrete)部分空間学習法を提案する。
論文 参考訳(メタデータ) (2023-12-11T07:24:54Z) - Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts [75.75548749888029]
本稿では,全てのタスクに対してパラメータを共同で訓練し,複数の異種タスク間で完全に共有する視覚言語モデルを提案する。
単一のモデルで、Musteteerは単一のタスクでトレーニングされた強いベースラインに匹敵する結果を得る。
論文 参考訳(メタデータ) (2023-05-11T17:57:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。