論文の概要: Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond
- arxiv url: http://arxiv.org/abs/2402.14522v2
- Date: Fri, 12 Jul 2024 10:39:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 05:17:24.791660
- Title: Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond
- Title(参考訳): 複数のモデルにまたがる統一タスク埋め込みに向けて: Promptベースの大規模言語モデルのギャップを埋める
- Authors: Xinyu Wang, Hainiu Xu, Lin Gui, Yulan He,
- Abstract要約: 本稿では,単一ベクトル空間内において,より小さな言語モデルや多様なプロンプトを持つ大規模言語モデルを含む,様々なモデルからのタスク埋め込みである統合タスク埋め込み(FUTE)フレームワークを提案する。
このような一様性は、異なるモデル間の類似性の比較と分析を可能にし、マルチモデルシナリオにおける既存のタスク埋め込みメソッドの範囲と有用性を広げる。
- 参考スコア(独自算出の注目度): 16.913115978881866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Task embedding, a meta-learning technique that captures task-specific information, has gained popularity, especially in areas such as multi-task learning, model editing, and interpretability. However, it faces challenges with the emergence of prompt-guided Large Language Models (LLMs) operating in a gradient-free manner. Existing task embedding methods rely on fine-tuned, task-specific language models, which hinders the adaptability of task embeddings across diverse models, especially prompt-based LLMs. To hardness the potential of task embeddings in the era of LLMs, we propose a framework for unified task embeddings (FUTE), harmonizing task embeddings from various models, including smaller language models and LLMs with varied prompts, within a single vector space. Such uniformity enables comparison and analysis of similarities amongst different models, broadening the scope and utility of existing task embedding methods in multi-model scenarios, while maintaining their performance comparable to architecture-specific methods.
- Abstract(参考訳): タスク固有の情報をキャプチャするメタ学習技術であるタスク埋め込みは、特にマルチタスク学習、モデル編集、解釈可能性などの分野で人気を集めている。
しかし、プロンプト誘導型大規模言語モデル(LLM)がグラデーションフリーで動作し、課題に直面している。
既存のタスク埋め込み手法は、細調整されたタスク固有の言語モデルに依存しており、様々なモデル、特にプロンプトベースのLLMに対するタスク埋め込みの適応性を妨げている。
LLMの時代にタスク埋め込みの可能性を困難にするため、単一ベクトル空間内で、より小さな言語モデルや様々なプロンプトを持つLLMを含む様々なモデルからタスク埋め込みを調和させる統合タスク埋め込み(FUTE)フレームワークを提案する。
このような統一性は、異なるモデル間の類似性の比較と分析を可能にし、アーキテクチャ固有のメソッドに匹敵する性能を維持しながら、既存のタスク埋め込みメソッドの範囲と実用性を広げる。
関連論文リスト
- MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
textbfGPTスケールモデルをマージするための textbfModel textbfExclusive textbfTask textbfArithmetic を提案する。
提案するMetaGPTは,データに依存しず,検索処理を回避し,低コストで実装が容易なメタGPTである。
論文 参考訳(メタデータ) (2024-06-17T10:12:45Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- 言語モデルの拡張のための構成 -- は、モデル間の相互アテンションを導入して、表現を構成し、新しい機能を有効にする。
低リソース言語で訓練されたより小さなモデルでPaLM2-Sを増強すると、英語への翻訳のようなタスクで最大13%の改善が達成される。
PaLM2-Sがコード固有モデルで拡張されると、コード生成や説明タスクのベースモデルよりも40%向上する。
論文 参考訳(メタデータ) (2024-01-04T18:53:01Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
一般的な事前訓練された大規模モデルから微調整されたマージングモデルは、様々なタスクに特化しているが、様々なタスクでうまく機能するマルチタスクモデルを構築するための安価でスケーラブルな戦略として実証されている。
本稿では、共通低次元部分空間を同定し、その共有情報トラック干渉問題を性能を犠牲にすることなく利用するための連続緩和(Concrete)部分空間学習法を提案する。
論文 参考訳(メタデータ) (2023-12-11T07:24:54Z) - Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts [75.75548749888029]
本稿では,全てのタスクに対してパラメータを共同で訓練し,複数の異種タスク間で完全に共有する視覚言語モデルを提案する。
単一のモデルで、Musteteerは単一のタスクでトレーニングされた強いベースラインに匹敵する結果を得る。
論文 参考訳(メタデータ) (2023-05-11T17:57:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。