Balanced Data Sampling for Language Model Training with Clustering
- URL: http://arxiv.org/abs/2402.14526v2
- Date: Mon, 3 Jun 2024 06:48:34 GMT
- Title: Balanced Data Sampling for Language Model Training with Clustering
- Authors: Yunfan Shao, Linyang Li, Zhaoye Fei, Hang Yan, Dahua Lin, Xipeng Qiu,
- Abstract summary: We propose ClusterClip Sampling to balance the text distribution of training data for better model training.
Extensive experiments validate the effectiveness of ClusterClip Sampling.
- Score: 96.46042695333655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data plays a fundamental role in the training of Large Language Models (LLMs). While attention has been paid to the collection and composition of datasets, determining the data sampling strategy in training remains an open question. Most LLMs are trained with a simple strategy, random sampling. However, this sampling strategy ignores the unbalanced nature of training data distribution, which can be sub-optimal. In this paper, we propose ClusterClip Sampling to balance the text distribution of training data for better model training. Specifically, ClusterClip Sampling utilizes data clustering to reflect the data distribution of the training set and balances the common samples and rare samples during training based on the cluster results. A repetition clip operation is introduced to mitigate the overfitting issue led by samples from certain clusters. Extensive experiments validate the effectiveness of ClusterClip Sampling, which outperforms random sampling and other cluster-based sampling variants under various training datasets and large language models.
Related papers
- Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
We show that maintaining performance is feasible even with uneven sample distributions.
We propose a novel active learning based adaptive sampling strategy to optimize the sample selection.
Our approach outperforms the state-of-the-art dataset compression methods.
arXiv Detail & Related papers (2024-07-09T23:09:18Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Debiased Sample Selection for Combating Noisy Labels [24.296451733127956]
We propose a noIse-Tolerant Expert Model (ITEM) for debiased learning in sample selection.
Specifically, to mitigate the training bias, we design a robust network architecture that integrates with multiple experts.
By training on the mixture of two class-discriminative mini-batches, the model mitigates the effect of the imbalanced training set.
arXiv Detail & Related papers (2024-01-24T10:37:28Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Data Curation Alone Can Stabilize In-context Learning [20.874674130060388]
In-context learning (ICL) enables large language models to perform new tasks by prompting them with a sequence of training examples.
randomly sampling examples from a training set leads to high variance in performance.
We show that carefully curating a subset of training data greatly stabilizes ICL performance without any other changes to the ICL algorithm.
arXiv Detail & Related papers (2022-12-20T15:58:54Z) - Dataset Pruning: Reducing Training Data by Examining Generalization
Influence [30.30255670341501]
Do all training data contribute to model's performance?
How to construct a smallest subset from the entire training data as a proxy training set without significantly sacrificing the model's performance?
arXiv Detail & Related papers (2022-05-19T05:36:35Z) - A Data Cartography based MixUp for Pre-trained Language Models [47.90235939359225]
MixUp is a data augmentation strategy where additional samples are generated during training by combining random pairs of training samples and their labels.
We propose TDMixUp, a novel MixUp strategy that leverages Training Dynamics and allows more informative samples to be combined for generating new data samples.
We empirically validate that our method not only achieves competitive performance using a smaller subset of the training data compared with strong baselines, but also yields lower expected calibration error on the pre-trained language model, BERT, on both in-domain and out-of-domain settings in a wide range of NLP tasks.
arXiv Detail & Related papers (2022-05-06T17:59:19Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
This paper proposes a one-for-more training objective that takes the generalization ability of selected samples as a loss function.
Our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework.
arXiv Detail & Related papers (2020-12-10T06:37:09Z) - Optimal Importance Sampling for Federated Learning [57.14673504239551]
Federated learning involves a mixture of centralized and decentralized processing tasks.
The sampling of both agents and data is generally uniform; however, in this work we consider non-uniform sampling.
We derive optimal importance sampling strategies for both agent and data selection and show that non-uniform sampling without replacement improves the performance of the original FedAvg algorithm.
arXiv Detail & Related papers (2020-10-26T14:15:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.