Bringing Generative AI to Adaptive Learning in Education
- URL: http://arxiv.org/abs/2402.14601v3
- Date: Fri, 28 Jun 2024 23:43:07 GMT
- Title: Bringing Generative AI to Adaptive Learning in Education
- Authors: Hang Li, Tianlong Xu, Chaoli Zhang, Eason Chen, Jing Liang, Xing Fan, Haoyang Li, Jiliang Tang, Qingsong Wen,
- Abstract summary: We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
- Score: 58.690250000579496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent surge in generative AI technologies, such as large language models and diffusion models, has boosted the development of AI applications in various domains, including science, finance, and education. Concurrently, adaptive learning, a concept that has gained substantial interest in the educational sphere, has proven its efficacy in enhancing students' learning efficiency. In this position paper, we aim to shed light on the intersectional studies of these two methods, which combine generative AI with adaptive learning concepts. By presenting discussions about the benefits, challenges, and potentials in this field, we argue that this union will contribute significantly to the development of the next-stage learning format in education.
Related papers
- From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - AI and personalized learning: bridging the gap with modern educational goals [1.1510009152620668]
We examine the characteristics of AI-driven personalized learning solutions in light of the OECD Learning Compass 2030 goals.
We identify areas where most present-day PL technologies could better embrace essential elements of contemporary education.
We propose a hybrid model that blends artificial intelligence with a collaborative, teacher-facilitated approach to personalized learning.
arXiv Detail & Related papers (2024-04-03T15:07:00Z) - Generative AI Adoption in Classroom in Context of Technology Acceptance Model (TAM) and the Innovation Diffusion Theory (IDT) [1.9659095632676098]
This study aims to dissect the underlying factors influencing educators' perceptions and acceptance of GenAI and LLMs.
Our investigation reveals a strong positive correlation between the perceived usefulness of GenAI tools and their acceptance.
The perceived ease of use emerged as a significant factor, though to a lesser extent, influencing acceptance.
arXiv Detail & Related papers (2024-03-29T22:41:51Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Generative AI and Its Educational Implications [0.0]
We discuss the implications of generative AI on education across four critical sections.
We propose ways in which generative AI can transform the educational landscape.
Acknowledging the societal impact, we emphasize the need for updating curricula.
arXiv Detail & Related papers (2023-12-26T21:29:31Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - White Paper: The Generative Education (GenEd) Framework [0.0]
The Generative Education (GenEd) Framework explores the transition from Large Language Models (LLMs) to Large Multimodal Models (LMMs) in education.
This paper delves into the potential of LMMs to create personalized, interactive, and emotionally-aware learning environments.
arXiv Detail & Related papers (2023-10-16T23:30:42Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.