Deep Active Learning for Computer Vision: Past and Future
- URL: http://arxiv.org/abs/2211.14819v1
- Date: Sun, 27 Nov 2022 13:07:14 GMT
- Title: Deep Active Learning for Computer Vision: Past and Future
- Authors: Rinyoichi Takezoe, Xu Liu, Shunan Mao, Marco Tianyu Chen, Zhanpeng
Feng, Shiliang Zhang, Xiaoyu Wang
- Abstract summary: Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
- Score: 50.19394935978135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an important data selection schema, active learning emerges as the
essential component when iterating an Artificial Intelligence (AI) model. It
becomes even more critical given the dominance of deep neural network based
models, which are composed of a large number of parameters and data hungry, in
application. Despite its indispensable role for developing AI models, research
on active learning is not as intensive as other research directions. In this
paper, we present a review of active learning through deep active learning
approaches from the following perspectives: 1) technical advancements in active
learning, 2) applications of active learning in computer vision, 3) industrial
systems leveraging or with potential to leverage active learning for data
iteration, 4) current limitations and future research directions. We expect
this paper to clarify the significance of active learning in a modern AI model
manufacturing process and to bring additional research attention to active
learning. By addressing data automation challenges and coping with automated
machine learning systems, active learning will facilitate democratization of AI
technologies by boosting model production at scale.
Related papers
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
arXiv Detail & Related papers (2024-08-21T11:32:09Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Active ML for 6G: Towards Efficient Data Generation, Acquisition, and Annotation [16.27834604691938]
This paper explores the integration of active machine learning (ML) for 6G networks.
Unlike passive ML systems, active ML can be made to interact with the network environment.
We highlight the potential of active learning based 6G networks to enhance computational efficiency.
arXiv Detail & Related papers (2024-06-05T21:29:05Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Enhancing Robot Learning through Learned Human-Attention Feature Maps [6.724036710994883]
We think that embedding auxiliary information about focus point into robot learning would enhance efficiency and robustness of the learning process.
In this paper, we propose a novel approach to model and emulate the human attention with an approximate prediction model.
We test our approach on two learning tasks - object detection and imitation learning.
arXiv Detail & Related papers (2023-08-29T14:23:44Z) - ALANNO: An Active Learning Annotation System for Mortals [0.0]
ALANNO is an open-source annotation system for NLP tasks powered by active learning.
We focus on the practical challenges in deploying active learning systems.
We support the system with a wealth of active learning methods and underlying machine learning models.
arXiv Detail & Related papers (2022-11-11T14:19:41Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
In this paper, we analyse the main drawbacks of current active learning techniques.
We do a systematic study on the effects of the most common issues of real-world datasets on the deep active learning process.
We derive two techniques that can speed up the active learning loop such as partial uncertainty sampling and larger query size.
arXiv Detail & Related papers (2020-06-17T14:51:11Z) - Scalable Active Learning for Object Detection [20.99502312184771]
Active learning is a powerful technique to improve data efficiency for supervised learning methods.
We have built a scalable production system for active learning in the domain of autonomous driving.
arXiv Detail & Related papers (2020-04-09T17:28:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.