論文の概要: Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models
- arxiv url: http://arxiv.org/abs/2402.14780v3
- Date: Wed, 28 Aug 2024 01:13:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 11:00:36.770653
- Title: Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models
- Title(参考訳): Customize-A-Video: テキスト・ビデオ拡散モデルのワンショットモーションカスタマイズ
- Authors: Yixuan Ren, Yang Zhou, Jimei Yang, Jing Shi, Difan Liu, Feng Liu, Mingi Kwon, Abhinav Shrivastava,
- Abstract要約: 本研究では,単一参照ビデオからの動作をモデル化し,空間的・時間的変化のある新しい主題やシーンに適応するCustomize-A-Videoを提案する。
提案するモジュールは、ステージ化されたパイプラインでトレーニングされ、プラグイン・アンド・プレイ方式で推論され、様々な下流タスクへの容易に拡張できる。
- 参考スコア(独自算出の注目度): 48.56724784226513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image customization has been extensively studied in text-to-image (T2I) diffusion models, leading to impressive outcomes and applications. With the emergence of text-to-video (T2V) diffusion models, its temporal counterpart, motion customization, has not yet been well investigated. To address the challenge of one-shot video motion customization, we propose Customize-A-Video that models the motion from a single reference video and adapts it to new subjects and scenes with both spatial and temporal varieties. It leverages low-rank adaptation (LoRA) on temporal attention layers to tailor the pre-trained T2V diffusion model for specific motion modeling. To disentangle the spatial and temporal information during training, we introduce a novel concept of appearance absorbers that detach the original appearance from the reference video prior to motion learning. The proposed modules are trained in a staged pipeline and inferred in a plug-and-play fashion, enabling easy extensions to various downstream tasks such as custom video generation and editing, video appearance customization and multiple motion combination. Our project page can be found at https://customize-a-video.github.io.
- Abstract(参考訳): 画像のカスタマイズはテキスト・ツー・イメージ(T2I)拡散モデルで広く研究され、印象的な結果と応用をもたらした。
テキスト・ツー・ビデオ拡散モデル(T2V)の出現に伴い、その時間的対応であるモーション・カスタマイズは未だ十分に研究されていない。
ワンショットビデオモーションカスタマイズの課題に対処するために,単一参照ビデオからのモーションをモデル化し,空間的・時間的変化のある新しい主題やシーンに適応するCustomize-A-Videoを提案する。
時間的注意層上でのローランク適応(LoRA)を利用して、特定の動きモデリングのために事前訓練されたT2V拡散モデルを調整する。
トレーニング中における空間的・時間的情報を切り離すために,動作学習に先立って,参照映像から本来の外観を逸脱する外観吸収体の概念を導入する。
提案したモジュールは、ステージ化されたパイプラインでトレーニングされ、プラグイン・アンド・プレイ方式で推論され、カスタムビデオ生成や編集、ビデオの外観のカスタマイズ、複数モーションの組み合わせなど、さまざまな下流タスクへの拡張が容易になる。
私たちのプロジェクトページはhttps://customize-a-video.github.io.comにある。
関連論文リスト
- Investigating the Effectiveness of Cross-Attention to Unlock Zero-Shot Editing of Text-to-Video Diffusion Models [52.28245595257831]
クロスアテンションガイダンスは、ビデオを編集する上で有望なアプローチだ。
現行のT2Vモデルの限界にもかかわらず、動画編集にはクロスアテンションガイダンスが有望なアプローチであることを示す。
論文 参考訳(メタデータ) (2024-04-08T13:40:01Z) - Make-Your-Anchor: A Diffusion-based 2D Avatar Generation Framework [33.46782517803435]
Make-Your-Anchorは、トレーニングのために個人の1分間のビデオクリップだけを必要とするシステムである。
入力ビデオ上に構造誘導拡散モデルを用いて3次元メッシュ条件を人間の外見に表現する。
出力ビデオにおける顔領域の視覚的品質を改善するために、新しい識別特異的顔強調モジュールが導入された。
論文 参考訳(メタデータ) (2024-03-25T07:54:18Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
ワンショットのインスタンス誘導モーションカスタマイズ手法であるMotionCrafterを紹介する。
MotionCrafterは、基準運動をベースモデルの時間成分に注入する並列時空間アーキテクチャを採用している。
トレーニング中、凍結ベースモデルは外見の正規化を提供し、運動から効果的に外見を分離する。
論文 参考訳(メタデータ) (2023-12-08T16:31:04Z) - DreamVideo: Composing Your Dream Videos with Customized Subject and
Motion [52.7394517692186]
対象の静的画像からパーソナライズされたビデオを生成する新しいアプローチであるDreamVideoを紹介します。
DreamVideoは、このタスクを、トレーニング済みのビデオ拡散モデルを活用することによって、主観学習とモーション学習の2つの段階に分離する。
モーション学習では、対象のモーションパターンを効果的にモデル化するために、モーションアダプタを設計し、所定のビデオに微調整する。
論文 参考訳(メタデータ) (2023-12-07T16:57:26Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) はビデオ拡散モデルに時間的注意層を適応させる新しいワンショットチューニング手法である。
本研究では, 連続するフレーム間の残留ベクトルを運動基準として用いた新しい運動蒸留法を提案する。
実世界のさまざまな動きや状況にまたがる最先端のビデオ生成モデルに対して,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-01T06:50:11Z) - MotionDirector: Motion Customization of Text-to-Video Diffusion Models [24.282240656366714]
Motion Customizationは、既存のテキストとビデオの拡散モデルを適用して、カスタマイズされたモーションでビデオを生成することを目的としている。
我々は、外見と動きの学習を分離するために、デュアルパスのLoRAsアーキテクチャを持つMotionDirectorを提案する。
また,異なる動画の外観と動きの混合や,カスタマイズされたモーションによる単一画像のアニメーションなど,さまざまなダウンストリームアプリケーションもサポートしている。
論文 参考訳(メタデータ) (2023-10-12T16:26:18Z) - AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models
without Specific Tuning [92.33690050667475]
AnimateDiffは、モデル固有のチューニングを必要とせずに、パーソナライズされたT2Iモデルをアニメーションするためのフレームワークである。
我々は,AnimateDiffの軽量微調整技術であるMotionLoRAを提案する。
その結果,これらのモデルが視覚的品質と動きの多様性を保ちながら,時間的にスムーズなアニメーションクリップを生成するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2023-07-10T17:34:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。