論文の概要: Same Task, More Tokens: the Impact of Input Length on the Reasoning Performance of Large Language Models
- arxiv url: http://arxiv.org/abs/2402.14848v2
- Date: Wed, 10 Jul 2024 17:01:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:49:49.258373
- Title: Same Task, More Tokens: the Impact of Input Length on the Reasoning Performance of Large Language Models
- Title(参考訳): 課題, 詳細:入力長が大規模言語モデルの推論性能に及ぼす影響
- Authors: Mosh Levy, Alon Jacoby, Yoav Goldberg,
- Abstract要約: 本稿では,入力長がLarge Language Models(LLMs)の能力に与える影響について検討する。
同一サンプルの複数バージョンを用いて入力長の影響を分離し,それぞれが異なる長さ,タイプ,位置のパディングで拡張した。
劣化傾向はデータセットのすべてのバージョンに現れるが、強度は異なる。
- 参考スコア(独自算出の注目度): 48.35385912526338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the impact of extending input lengths on the capabilities of Large Language Models (LLMs). Despite LLMs advancements in recent times, their performance consistency across different input lengths is not well understood. We investigate this aspect by introducing a novel QA reasoning framework, specifically designed to assess the impact of input length. We isolate the effect of input length using multiple versions of the same sample, each being extended with padding of different lengths, types and locations. Our findings show a notable degradation in LLMs' reasoning performance at much shorter input lengths than their technical maximum. We show that the degradation trend appears in every version of our dataset, although at different intensities. Additionally, our study reveals that the traditional metric of next word prediction correlates negatively with performance of LLMs' on our reasoning dataset. We analyse our results and identify failure modes that can serve as useful guides for future research, potentially informing strategies to address the limitations observed in LLMs.
- Abstract(参考訳): 本稿では,入力長がLarge Language Models (LLMs) の能力に与える影響について検討する。
近年のLSMの進歩にもかかわらず、異なる入力長にわたる性能の整合性はよく理解されていない。
本稿では,入力長の影響を評価するための新しいQA推論フレームワークを導入することで,この側面を考察する。
同一サンプルの複数バージョンを用いて入力長の影響を分離し,それぞれが異なる長さ,タイプ,位置のパディングで拡張した。
この結果,LLMの推理性能は技術的最大値よりもはるかに短い入力長で顕著に低下していた。
劣化傾向はデータセットのすべてのバージョンに現れるが、強度は異なる。
さらに,本研究では,次の単語予測の従来の指標が,推論データセット上でのLLMの性能と負の相関関係があることを明らかにした。
結果を分析し、将来の研究の有用なガイドとして機能する障害モードを特定し、LLMで観測される限界に対処するための戦略を提示する可能性がある。
関連論文リスト
- Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
我々は、大規模言語モデル(LLM)の特定の限界を特定するために、時間的データセットの包括的な分析を行う。
調査の結果,時間的時間的質問応答に特化したデータセットであるTempTabQAが強化された。
我々は,この領域におけるLLM機能を強化するために,新しいアプローチC.L.E.A.R.を導入する。
論文 参考訳(メタデータ) (2024-07-22T20:13:10Z) - Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness [39.57155321515097]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示している。
LLMがグラフ上での学習において堅牢性を示すかどうかは不明である。
論文 参考訳(メタデータ) (2024-07-16T09:05:31Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
弱い教師付きベンチマークであるtextscPuzzleBen について,25,147 の複雑な質問,回答,人為的合理性からなる。
データセットのユニークな側面は、10,000の未注釈の質問を含めることであり、LLMの推論能力を高めるために、より少ないスーパーサイズのデータを活用することができる。
論文 参考訳(メタデータ) (2024-05-07T07:39:15Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを大幅に進歩させた。
近年の研究では、中程度のLLMはタスク固有の微調整後、より大きなLLMよりも優れていることが示されている。
本研究では,特定の言語対に対する文書レベルの機械翻訳(DocMT)にLLMを適用することに焦点を当てた。
論文 参考訳(メタデータ) (2024-01-12T09:29:13Z) - LooGLE: Can Long-Context Language Models Understand Long Contexts? [50.408957515411096]
LooGLEは、大規模言語モデルの長いコンテキスト理解のためのベンチマークである。
2022年以降に比較的新しい文書が登場し、1ドキュメントあたり24,000以上のトークンと、さまざまな領域にまたがる6,000の新たな質問が提供されている。
LooGLEにおける8つの最先端LCMの評価から,重要な所見が得られた。
論文 参考訳(メタデータ) (2023-11-08T01:45:37Z) - MenatQA: A New Dataset for Testing the Temporal Comprehension and
Reasoning Abilities of Large Language Models [17.322480769274062]
大規模言語モデル(LLM)は、多くの自然言語処理(NLP)タスクにおいてほぼ飽和した性能を示している。
本稿では,LLMの時間的理解と推論能力を評価するために,合計2,853個のサンプルを用いた多感性因子時間QA(MenatQA)を構築した。
論文 参考訳(メタデータ) (2023-10-08T13:19:52Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Evaluating the Capability of Large-scale Language Models on Chinese
Grammatical Error Correction Task [10.597024796304016]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて顕著な能力を示している。
本報告では,中国語の文法的誤り訂正タスクにおける大規模言語モデルの性能について検討する。
論文 参考訳(メタデータ) (2023-07-08T13:10:59Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。