ChatEL: Entity Linking with Chatbots
- URL: http://arxiv.org/abs/2402.14858v1
- Date: Tue, 20 Feb 2024 20:52:57 GMT
- Title: ChatEL: Entity Linking with Chatbots
- Authors: Yifan Ding and Qingkai Zeng and Tim Weninger
- Abstract summary: ChatEL is a three-step framework to prompt Large Language Models to return accurate results.
Overall the ChatEL framework improves the average F1 performance across 10 datasets by more than 2%.
- Score: 11.944348800783834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entity Linking (EL) is an essential and challenging task in natural language
processing that seeks to link some text representing an entity within a
document or sentence with its corresponding entry in a dictionary or knowledge
base. Most existing approaches focus on creating elaborate contextual models
that look for clues the words surrounding the entity-text to help solve the
linking problem. Although these fine-tuned language models tend to work, they
can be unwieldy, difficult to train, and do not transfer well to other domains.
Fortunately, Large Language Models (LLMs) like GPT provide a highly-advanced
solution to the problems inherent in EL models, but simply naive prompts to
LLMs do not work well. In the present work, we define ChatEL, which is a
three-step framework to prompt LLMs to return accurate results. Overall the
ChatEL framework improves the average F1 performance across 10 datasets by more
than 2%. Finally, a thorough error analysis shows many instances with the
ground truth labels were actually incorrect, and the labels predicted by ChatEL
were actually correct. This indicates that the quantitative results presented
in this paper may be a conservative estimate of the actual performance. All
data and code are available as an open-source package on GitHub at
https://github.com/yifding/In_Context_EL.
Related papers
- Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - EntGPT: Linking Generative Large Language Models with Knowledge Bases [8.557683104631883]
We introduce EntGPT, employing advanced prompt engineering to enhance EL tasks.
Our three-step hard-prompting method (EntGPT-P) significantly boosts the micro-F_1 score by up to 36% over vanilla prompts.
Our instruction tuning method (EntGPT-I) improves micro-F_1 scores by 2.1% on average in supervised EL tasks.
arXiv Detail & Related papers (2024-02-09T19:16:27Z) - SeqGPT: An Out-of-the-box Large Language Model for Open Domain Sequence
Understanding [103.34092301324425]
Large language models (LLMs) have shown impressive ability for open-domain NLP tasks.
We present SeqGPT, a bilingual (i.e., English and Chinese) open-source autoregressive model specially enhanced for open-domain natural language understanding.
arXiv Detail & Related papers (2023-08-21T07:31:19Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
We test the pure causal inference skills of large language models (LLMs)
We formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables.
We show that these models achieve almost close to random performance on the task.
arXiv Detail & Related papers (2023-06-09T12:09:15Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - P-Adapters: Robustly Extracting Factual Information from Language Models
with Diverse Prompts [7.657992756210283]
We introduce P-Adapters: lightweight models that sit between the embedding layer and first attention layer of Large Language Models.
They take LLM embeddings as input and output continuous prompts that are used to query the LLM.
They show between 12-26% absolute improvement in consistency and 36-50% absolute improvement in precision over a baseline of only using natural language queries.
arXiv Detail & Related papers (2021-10-14T11:32:22Z) - Multilingual Autoregressive Entity Linking [49.35994386221958]
mGENRE is a sequence-to-sequence system for the Multilingual Entity Linking problem.
For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token.
We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks.
arXiv Detail & Related papers (2021-03-23T13:25:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.