Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models
- URL: http://arxiv.org/abs/2402.14195v1
- Date: Thu, 22 Feb 2024 00:41:23 GMT
- Title: Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models
- Authors: Younghun Lee, Sungchul Kim, Tong Yu, Ryan A. Rossi, Xiang Chen
- Abstract summary: Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
- Score: 42.16047343029512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have been widely used as general-purpose AI
agents showing comparable performance on many downstream tasks. However,
existing work shows that it is challenging for LLMs to integrate structured
data (e.g. KG, tables, DBs) into their prompts; LLMs need to either understand
long text data or select the most relevant evidence prior to inference, and
both approaches are not trivial.
In this paper, we propose a framework, Learning to Reduce, that fine-tunes a
language model to generate a reduced version of an input context, given a task
description and context input. The model learns to reduce the input context
using On-Policy Reinforcement Learning and aims to improve the reasoning
performance of a fixed LLM. Experimental results illustrate that our model not
only achieves comparable accuracies in selecting the relevant evidence from an
input context, but also shows generalizability on different datasets. We
further show that our model helps improve the LLM's performance on downstream
tasks especially when the context is long.
Related papers
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Learning to Reduce: Towards Improving Performance of Large Language Models on Structured Data [39.29778853025738]
Large Language Models (LLMs) have been achieving competent performance on a wide range of downstream tasks.
This paper proposes a framework, Learning to Reduce, that fine-tunes a language model with On-Policy Learning to generate a reduced version of an input structured data.
arXiv Detail & Related papers (2024-07-03T01:51:50Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Enhancing In-Context Learning with Answer Feedback for Multi-Span
Question Answering [9.158919909909146]
In this paper, we propose a novel way of employing labeled data such as it informs LLM of some undesired output.
Experiments on three multi-span question answering datasets and a keyphrase extraction dataset show that our new prompting strategy consistently improves LLM's in-context learning performance.
arXiv Detail & Related papers (2023-06-07T15:20:24Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.