論文の概要: Re-Examine Distantly Supervised NER: A New Benchmark and a Simple
Approach
- arxiv url: http://arxiv.org/abs/2402.14948v2
- Date: Mon, 26 Feb 2024 14:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 18:21:38.246752
- Title: Re-Examine Distantly Supervised NER: A New Benchmark and a Simple
Approach
- Title(参考訳): Re-Examine Distantly Supervised NER:新しいベンチマークと簡単なアプローチ
- Authors: Yuepei Li, Kang Zhou, Qiao Qiao, Qing Wang and Qi Li
- Abstract要約: 我々は,QTLという実世界のベンチマークデータセットを用いて,現在のDS-NER手法の有効性を批判的に評価する。
ラベルノイズの一般的な問題に対処するため,カリキュラムベースのポジティブ・アンラベル学習CuPULを提案する。
実験の結果,CuPULはノイズラベルの影響を著しく低減し,既存手法よりも優れることがわかった。
- 参考スコア(独自算出の注目度): 15.87963432758696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper delves into Named Entity Recognition (NER) under the framework of
Distant Supervision (DS-NER), where the main challenge lies in the compromised
quality of labels due to inherent errors such as false positives, false
negatives, and positive type errors. We critically assess the efficacy of
current DS-NER methodologies using a real-world benchmark dataset named QTL,
revealing that their performance often does not meet expectations. To tackle
the prevalent issue of label noise, we introduce a simple yet effective
approach, Curriculum-based Positive-Unlabeled Learning CuPUL, which
strategically starts on "easy" and cleaner samples during the training process
to enhance model resilience to noisy samples. Our empirical results highlight
the capability of CuPUL to significantly reduce the impact of noisy labels and
outperform existing methods. QTL dataset and our code is available on GitHub.
- Abstract(参考訳): 本稿では,偽陽性,偽陰性,陽性型エラーといった固有の誤りにより,ラベルの品質が損なわれることが主な課題である,遠方監視(ds-ner)の枠組みの下で,名前付きエンティティ認識(ner)を展開する。
QTLと呼ばれる実世界のベンチマークデータセットを用いて,現在のDS-NER手法の有効性を批判的に評価し,その性能が期待を満たさないことを明らかにする。
ラベルノイズの一般的な問題に取り組むために,学習過程において「簡単な」サンプルとよりクリーンなサンプルを戦略的に開始し,ノイズサンプルに対するモデルのレジリエンスを高めるための,カリキュラムベースのポジティブ・アンラベル学習キュープルという,単純かつ効果的なアプローチを導入する。
実験結果から,CuPULはノイズラベルの影響を著しく低減し,既存手法より優れていることを示す。
QTLデータセットとコードはGitHubで公開されている。
関連論文リスト
- LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
本研究では,自然言語フィードバック型検証器Math-Minosを提案する。
実験の結果,少量の自然言語フィードバックが検証器の性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-20T06:42:27Z) - Better Practices for Domain Adaptation [62.70267990659201]
ドメイン適応(DA)は、ラベルを使わずに、モデルを配置データに適用するためのフレームワークを提供することを目的としている。
DAの明確な検証プロトコルは、文献の悪い実践につながっている。
ドメイン適応手法の3つの分野にまたがる課題を示す。
論文 参考訳(メタデータ) (2023-09-07T17:44:18Z) - An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning [58.59343434538218]
間接学習の観点から、ラベルなしデータの正負の擬似ラベルを正確に予測するための、単純だが非常に効果的な手法を提案する。
私たちのアプローチは、オフザシェルフ操作のみを使用することで、ほんの数行のコードで実装できます。
論文 参考訳(メタデータ) (2022-09-28T02:11:34Z) - Meta Objective Guided Disambiguation for Partial Label Learning [44.05801303440139]
メタ客観的ガイド型曖昧化(MoGD)を用いたラベル学習のための新しい枠組みを提案する。
MoGDは、小さな検証セットでメタ目標を解くことで、候補ラベルから基底トラスラベルを復元することを目的としている。
提案手法は,通常のSGDを用いた様々なディープネットワークを用いて容易に実装できる。
論文 参考訳(メタデータ) (2022-08-26T06:48:01Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - Few-shot Learning via Dependency Maximization and Instance Discriminant
Analysis [21.8311401851523]
そこで本研究では,カテゴリ毎にラベル付きデータが極めて少ない新しいオブジェクトの認識をモデルが学習する,数ショットの学習問題について検討する。
本稿では,少数ショット処理に伴うラベルなしデータを利用して,少数ショット性能を向上させるための簡単な手法を提案する。
論文 参考訳(メタデータ) (2021-09-07T02:19:01Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
文献では、Deep Convolutional Neural Networks (DCNNs)に基づく多数のオブジェクト検出方法が提案されている。
これらの手法はロボティクスに重要な制限がある:オフラインデータのみに学習するとバイアスが発生し、新しいタスクへの適応を防ぐことができる。
本研究では,弱い教師付き学習がこれらの問題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2020-12-28T16:36:11Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
深い予測モデルは、ラベル付きトレーニングデータという形で人間の監督に依存する。
Ask-n-Learnは,各アルゴリズムで推定されたペスドラベルを用いて得られる勾配埋め込みに基づく能動的学習手法である。
論文 参考訳(メタデータ) (2020-09-30T05:19:56Z) - BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant
Supervision [49.42215511723874]
我々は,NERモデルの予測性能を改善するための新しい計算フレームワーク,BONDを提案する。
具体的には,2段階の学習アルゴリズムを提案する。第1段階では,遠隔ラベルを用いて,事前学習された言語モデルをNERタスクに適用する。
第2段階では,遠隔ラベルを廃止し,モデル性能をさらに向上するための自己学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-28T04:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。