Comparative Analysis of Data Preprocessing Methods, Feature Selection
Techniques and Machine Learning Models for Improved Classification and
Regression Performance on Imbalanced Genetic Data
- URL: http://arxiv.org/abs/2402.14980v1
- Date: Thu, 22 Feb 2024 21:41:27 GMT
- Title: Comparative Analysis of Data Preprocessing Methods, Feature Selection
Techniques and Machine Learning Models for Improved Classification and
Regression Performance on Imbalanced Genetic Data
- Authors: Arshmeet Kaur and Morteza Sarmadi
- Abstract summary: We investigated the effects of data preprocessing, feature selection techniques, and model selection on the performance of models trained on genetic datasets.
We found that outliers/skew in predictor or target variables did not pose a challenge to regression models.
We also found that class-imbalanced target variables and skewed predictors had little to no impact on classification performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid advancements in genome sequencing have led to the collection of vast
amounts of genomics data. Researchers may be interested in using machine
learning models on such data to predict the pathogenicity or clinical
significance of a genetic mutation. However, many genetic datasets contain
imbalanced target variables that pose challenges to machine learning models:
observations are skewed/imbalanced in regression tasks or class-imbalanced in
classification tasks. Genetic datasets are also often high-cardinal and contain
skewed predictor variables, which poses further challenges. We aimed to
investigate the effects of data preprocessing, feature selection techniques,
and model selection on the performance of models trained on these datasets. We
measured performance with 5-fold cross-validation and compared averaged
r-squared and accuracy metrics across different combinations of techniques. We
found that outliers/skew in predictor or target variables did not pose a
challenge to regression models. We also found that class-imbalanced target
variables and skewed predictors had little to no impact on classification
performance. Random forest was the best model to use for imbalanced regression
tasks. While our study uses a genetic dataset as an example of a real-world
application, our findings can be generalized to any similar datasets.
Related papers
- Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - Predicting loss-of-function impact of genetic mutations: a machine
learning approach [0.0]
This paper aims to train machine learning models on the attributes of a genetic mutation to predict LoFtool scores.
These attributes included, but were not limited to, the position of a mutation on a chromosome, changes in amino acids, and changes in codons caused by the mutation.
Models were evaluated using five-fold cross-validated averages of r-squared, mean squared error, root mean squared error, mean absolute error, and explained variance.
arXiv Detail & Related papers (2024-01-26T19:27:38Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
We propose Data-IQ, a framework to systematically stratify examples into subgroups with respect to their outcomes.
We experimentally demonstrate the benefits of Data-IQ on four real-world medical datasets.
arXiv Detail & Related papers (2022-10-24T08:57:55Z) - Robust self-healing prediction model for high dimensional data [0.685316573653194]
This work proposes a robust self healing (RSH) hybrid prediction model.
It functions by using the data in its entirety by removing errors and inconsistencies from it rather than discarding any data.
The proposed method is compared with some of the existing high performing models and the results are analyzed.
arXiv Detail & Related papers (2022-10-04T17:55:50Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Variable selection with missing data in both covariates and outcomes:
Imputation and machine learning [1.0333430439241666]
The missing data issue is ubiquitous in health studies.
Machine learning methods weaken parametric assumptions.
XGBoost and BART have the overall best performance across various settings.
arXiv Detail & Related papers (2021-04-06T20:18:29Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately.
Our approach should be preferred if the goal is to select as many relevant predictors as possible.
Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level.
arXiv Detail & Related papers (2020-08-01T10:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.